期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
双叶片离心泵自吸过程的气液流态及振动特性 被引量:2
1
作者 吴登昊 张婷 +3 位作者 祝之兵 钱亨 任芸 牟介刚 《振动与冲击》 EI CSCD 北大核心 2022年第8期1-6,共6页
泵的自吸过程包含着复杂的气液两相流动结构,这种不稳定的两相流动结构会诱发振动和噪声,不利于泵的稳定运行。目前,针对泵自吸过程的研究主要集中于泵的自吸机理及气液流态的演变规律,很少涉及自吸过程的振动特性。为了揭示离心泵自吸... 泵的自吸过程包含着复杂的气液两相流动结构,这种不稳定的两相流动结构会诱发振动和噪声,不利于泵的稳定运行。目前,针对泵自吸过程的研究主要集中于泵的自吸机理及气液流态的演变规律,很少涉及自吸过程的振动特性。为了揭示离心泵自吸过程的振动诱导机制,通过搭建离心泵自吸性能试验装置,以双叶片离心泵为研究对象,采用高速摄影技术和振动测试技术开展自吸过程泵内气液流态及振动特性的试验研究。同时,设计5种不同位置的回流孔,研究回流孔位置对自吸性能及振动性能的影响规律。研究结果表明:自吸过程中,叶轮内部气液流动的剧烈变化加剧了叶轮转子系不稳定径向载荷,导致振动强度的增加;自吸过程中,振动激励频率分布在700 Hz~1200 Hz的中频段,并以宽频振动为主,叶轮内部存在一个明显气泡带;自吸过程结束时,首要激励频率为叶片通过频率,激励频率集中在25 Hz~400 Hz的低频段;回流孔位置对自吸时间影响显著,但是对振动强度影响较小。 展开更多
关键词 自吸过程 振动特性 气液流态 离心泵
下载PDF
筛板流体力学性能研究新进展 被引量:12
2
作者 裘俊红 《石油化工设备》 CAS 2001年第3期27-35,共9页
介绍了近 2 0年来普通筛板流体力学性能的研究进展 ,包括气液流态、气液分布、阻力损失、漏液、雾沫夹带、泡沫层、液面落差、堰上液层及降液管性能等 。
关键词 筛板 流体力学性能 降液管 雾沫夹带 堰上液层 气液流态 流分布 阻力损失 漏液 泡沫层
下载PDF
Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System 被引量:13
3
作者 罗小明 何利民 马华伟 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期26-32,共7页
During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure ... During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure fluctuation of severe slugging were studied in an experimental simulation system with inner diameter of 0.051 m.It is found that severe slugging can be divided into three severe slugging regimes:regime I at low gas and liquid flow rates with large pressure fluctuation,intermittent flow of liquid and gas in the riser,and apparent cutoff of liquid phase,regime II at high gas flow rate with non-periodic fluctuation and discontinuous liquid outflow and no gas cutoff,regime III at high liquid flow rate with degenerative pressure fluctuation in form of relatively stable bubbly or plug flow.The results indicate that severe slugging still occurs when the declination angle of pipeline is 0,and there are mainly two kinds of regimes:regime I and regime II.As the angle increases,the formation ranges of regime I and regime III increase slightly while that of regime II is not affected.With the increase of gas superficial velocity and liquid superficial velocity,the pressure fluctuation at the bottom of riser increases initially and then decreases.The maximum value of pressure fluctuation occurs at the transition boundary of regimes I and II. 展开更多
关键词 multiphase flow severe slugging pipeline-riser system flow regime pressure fluctuation
下载PDF
Stability of Stratified Gas-Liquid Flow in Horizontal and Near Horizontal Pipes 被引量:3
4
作者 顾汉洋 郭烈锦 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期619-625,共7页
A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is e... A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities. 展开更多
关键词 two-fluid model Kelvin-Helmholtz criterion interfacial instability gas-liquid stratified flow
下载PDF
Reconstructing bubble profiles from gas-liquid two-phase flow data using agglomerative hierarchical clustering method 被引量:2
5
作者 WU Dong-ling SONG Yan-po +1 位作者 PENG Xiao-qi GAO Dong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2056-2067,共12页
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ... The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion. 展开更多
关键词 bubble profile reconstruction gas-liquid two-phase flow clustering method surface-resolved computational fluid dynamics (CFD) distorted bubble shape
下载PDF
Analysis of the nonlinear dynamic characteristics of two-phase flow based on an improved matrix pencil method
6
作者 Hongwei Li Junpeng Liu +1 位作者 Yunlong Zhou Bin Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第6期737-748,共12页
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bu... Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed. 展开更多
关键词 Matrix pencil (MP) methodComponent energy index (CEI)Stability diagramFlow pattem identificationFlow dynamics
下载PDF
Scale-resolving simulations and investigations of the flow in a hydraulic retarder considering cavitation 被引量:3
7
作者 Xue-song LI Qing-tao WU +2 位作者 Li-ying MIAO Yu-ying YAN Chun-bao LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第10期817-833,共17页
Cavitation has a significant influence on the accurate control of the liquid filling rate and braking performance of a hydraulic retarder;however,previous studies of the flow field in hydraulic retarders have provided... Cavitation has a significant influence on the accurate control of the liquid filling rate and braking performance of a hydraulic retarder;however,previous studies of the flow field in hydraulic retarders have provided insufficient information in terms of considering cavitation.Here,the volume of fluid(VOF)method and a scale-resolving simulation(SRS)were employed to numerically and more comprehensively calculate and analyze the flow field in a retarder considering the cavitation phenomenon.The numerical models included the improved delayed detached eddy simulation(IDDES)model,stress-blended eddy simulation(SBES)model,dynamic large eddy simulation(DLES)model,and shear stress transport(SST)model in the Reynolds-averaged Navier-Stokes(RANS)model.All the calculations were typically validated by the brake torque in the impeller rather than the internal flow.The unsteady flow field indicated that the SBES and DLES models could better capture unsteady flow phenomena,such as the chord vortex.The SBES and DLES models could also better capture bubbles than the SST and IDDES models.Since the braking torque error of the SBES model was the smallest,the transient variation of the bubble volume fraction over time on a typical flow surface was analyzed in detail with the SBES model.It was found that bubbles mainly appeared in the center area of the blade suction surface,which coincided with the experiments.The accumulation of bubbles resulted in a larger bubble volume fraction in the center of the blade over time.In addition,the temperature variations of the pressure blade caused by heat transfer were further analyzed.More bubbles precipitated in the center of the blade,leading to a lower temperature in this area. 展开更多
关键词 Scale-resolving simulation(SRS) Hydraulic retarder CAVITATION Unsteady flow
原文传递
High flowrate injector with gaseous hydrogen and gaseous oxygen 被引量:1
8
作者 WANG XiaoWei CAI GuoBiao +1 位作者 GAO YuShan HUO HongFa 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第11期2958-2973,共16页
In order to get a high flowrate gas-gas injector and its design methodology, the combustion flow field of a typical shear-coaxial injector was analyzed firstly. The dimensional analysis was applied in the phenomenon o... In order to get a high flowrate gas-gas injector and its design methodology, the combustion flow field of a typical shear-coaxial injector was analyzed firstly. The dimensional analysis was applied in the phenomenon of gas-gas combustion, and design parameter optimization and a structure improvement were also carded out. A high flowrate single-element injector with high 1-12/O2 momentum ratio and tapered 02 post tip was obtained and validated by both numerical and experimental studies. This high flowrate injector has simple construction and it can effectively enhance the mixing, decrease the combustion completion length and also has a benign heat environment. Furthermore, based on the study of the single-element injector, numerical optimization and validation experiments were conducted successively on a multi-element injector equipped with high flowrate injection elements. The multi-element injector with the high flowrate elements started up and shut down smoothly, and operated steadily without any stability aids. In the combustor designed with nominal parameters, this injection element can obtain high combustion efficiency with a flowrate of 3.7 times that of SSME main injector element and shows a benign chamber wall heat compatibility. This injector design and the design methodology can become a reference for the design of other types of injectors for liquid rocket engines. 展开更多
关键词 liquid rocket engine gas-gas injector shear-coaxial injector Large Eddy Simulation subscale combustor experiment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部