期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
宁波市气温变率与儿童手足口病的关联性分析 被引量:1
1
作者 谷少华 丁克琴 +2 位作者 易波 陆蓓蓓 王爱红 《中国卫生统计》 CSCD 北大核心 2019年第6期809-813,共5页
目的分析外界气温波动和儿童手足口病之间的短期关联。方法收集宁波市2010-2015年0~12岁儿童手足口病报告数据和同期的地面气象监测资料,采用气温变率(temperature variability,TV)作为气温波动的替代指标,利用时间序列分析方法定量评... 目的分析外界气温波动和儿童手足口病之间的短期关联。方法收集宁波市2010-2015年0~12岁儿童手足口病报告数据和同期的地面气象监测资料,采用气温变率(temperature variability,TV)作为气温波动的替代指标,利用时间序列分析方法定量评估气温变率和手足口病之间的关联,以及不同年龄组和不同季节时效应的差异。结果2010-2015年宁波市共收集到0~12岁儿童手足口病报告病例138190例,其中93.17%的病例集中于5岁及以下儿童。研究发现,气温变率与手足口病之间存在统计学关联(P<0.05),并在累积滞后0~3天(TV0-3)时效应值最大。TV0-3每升高1℃,0~12岁儿童手足口病发病风险升高1.47%(95%CI:0.56~2.39%);3~5岁组和6~12岁组儿童手足口发病风险分别增加2.03%(95%CI:0.64~3.45%)和3.18%(95%CI:0.52~5.91%)。不同滞后天数时均未发现0~2岁组儿童受到气温变率的影响。冷季和温季时,气温变率的影响显著;而热季时则未见气温变率的效应存在。结论外界气温波动剧烈可能会增加儿童手足口病的发病风险,年龄和季节是该效应的修饰因子。 展开更多
关键词 手足口病 气温变率 年龄 季节
下载PDF
ENSO对中国东部前后冬天气尺度气温变率的不同影响及其可能机制
2
作者 吴迪 张文君 +2 位作者 耿新 薛奥运 胡苏琼 《气象学报》 CAS CSCD 北大核心 2023年第5期717-726,共10页
基于中国国家气象信息中心提供的中国第一代全球大气和陆面再分析产品(CRA)的逐日气温资料、美国国家海洋和大气管理局(NOAA)重建的逐月海表温度资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)提供的大气环流再分析资料,研... 基于中国国家气象信息中心提供的中国第一代全球大气和陆面再分析产品(CRA)的逐日气温资料、美国国家海洋和大气管理局(NOAA)重建的逐月海表温度资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)提供的大气环流再分析资料,研究了厄尔尼诺-南方涛动(ENSO)对中国东部前、后冬天气尺度气温变率的影响及其物理机制。结果表明,ENSO对中国东部天气尺度气温变率的影响在前、后冬存在显著差异。ENSO对前冬中国东部天气尺度气温变率影响较弱,后冬则显著增强。后冬时期,ENSO与长江中下游地区天气尺度气温变率呈现显著正相关,即厄尔尼诺年后冬天气尺度气温变率增强,气温波动幅度增大;拉尼娜年后冬天气尺度气温变率减弱,气温变化较为平缓。ENSO在后冬可通过影响与欧亚大陆上空南北温度梯度相关的大气斜压性调节下游东亚地区大气环流的天气尺度变率,进而影响天气尺度气温变率。厄尔尼诺年后冬,南北温度梯度大,大气斜压性较强,经向风活跃,冷空气活动较为频繁,天气尺度气温变率增大;拉尼娜年后冬,异常情况与之大致相反。在前冬ENSO对欧亚大陆上空南北梯度即大气斜压性影响较小,因而对中国东部天气尺度气温变率的影响也较弱。本研究的成果丰富了对ENSO影响中国气温变率的理解,有利于中国冬季气温季节预测水平的提升。 展开更多
关键词 ENSO 天气尺度气温变率 前冬 后冬
下载PDF
ENSO对中国冬季天气尺度气温变率的影响及可能机理 被引量:5
3
作者 任曼琳 张文君 +1 位作者 耿新 刘超 《气象学报》 CAS CSCD 北大核心 2020年第2期199-209,共11页
基于1960-2017年中国国家气象信息中心整编的753站逐日平均温度资料、美国国家海洋大气中心(NOAA)重建的逐月海表温度资料以及美国国家环境预测中心/国家大气研究中心(NCEP/NCAR)提供的再分析大气环流资料,分析了ENSO对中国冬季天气尺... 基于1960-2017年中国国家气象信息中心整编的753站逐日平均温度资料、美国国家海洋大气中心(NOAA)重建的逐月海表温度资料以及美国国家环境预测中心/国家大气研究中心(NCEP/NCAR)提供的再分析大气环流资料,分析了ENSO对中国冬季天气尺度气温变率的影响。结果表明,ENSO与中国东部大部分地区的冬季天气尺度气温变率呈显著正相关,即厄尔尼诺年冬季,中国气温波动幅度增大,天气尺度气温变率明显较强;而拉尼娜年冬季,气温变化相对平稳,天气尺度温度变率较小。进一步研究发现,厄尔尼诺事件加强了冬季欧亚大陆中高纬度地区的经向温度梯度,根据热成风原理,局地大气斜压性增强,西伯利亚地区的风暴活动和下游东亚地区大气环流的天气尺度变异也随之加强,因而有利于中国大部分地区天气尺度温度变率的增大。拉尼娜年冬季,异常情况与之大致相反。 展开更多
关键词 ENSO 气温变率 天气尺度 西伯利亚风暴轴
下载PDF
贵州夏季最高气温变率的时空分布特征 被引量:2
4
作者 彭芳 王君军 《贵州气象》 2010年第6期6-9,共4页
选取贵州19个代表站点47 a夏季日最高气温月平均及季平均资料,采用EOF分解方法对贵州夏季最高气温的变化进行分析,结果表明:前两个模态的累积方差贡献在82%~89.7%,特征值对应特征向量和时间系数能够较好地反映时空分布特征,第一特征向... 选取贵州19个代表站点47 a夏季日最高气温月平均及季平均资料,采用EOF分解方法对贵州夏季最高气温的变化进行分析,结果表明:前两个模态的累积方差贡献在82%~89.7%,特征值对应特征向量和时间系数能够较好地反映时空分布特征,第一特征向量代表的空间分布显示:全省变化趋势一致,东北部变化较西南部大,北部、东北部变率变化较南部西南部大;相应地时间系数变化幅度大,都有2~4 a的周期振荡;从第二特征向量代表的空间分布可知:各时段呈现出不一样的变化趋势,时间系数的值也普遍较第一特征向量小,突变不明显。 展开更多
关键词 贵州 最高气温变率 EOF 小波分析 特征向量
下载PDF
秋季北极海冰对中国冬季气温的影响 被引量:28
5
作者 谢永坤 刘玉芝 黄建平 《气象学报》 CAS CSCD 北大核心 2014年第4期703-710,共8页
利用海冰资料、中国地面气候资料、环流特征量资料及NCEP/NCAR再分析资料,研究了秋季北极海冰变化对中国冬季平均气温、日气温变率以及异常低温天气的影响。分析结果表明,秋季北极海冰异常偏多年中国冬季常为暖冬;异常偏少年中国冬季常... 利用海冰资料、中国地面气候资料、环流特征量资料及NCEP/NCAR再分析资料,研究了秋季北极海冰变化对中国冬季平均气温、日气温变率以及异常低温天气的影响。分析结果表明,秋季北极海冰异常偏多年中国冬季常为暖冬;异常偏少年中国冬季常为冷冬,且异常低温天气出现频率更高,常发生低温灾害事件。秋季北极海冰通过影响后期的北半球极涡、东亚冬季风和西伯利亚高压进而影响中国冬季的平均气温,且通过影响冬季异常强西伯利亚高压的出现频次,影响中国冬季异常低温天气的发生频次。合成分析结果表明,秋季北极海冰异常偏少年的冬季,中国以北亚欧大陆高纬度的偏北风较强,且中国及其以北的中高纬度地区空气异常偏冷,导致极地和高纬度的冷空气易向南爆发,造成中国冬季气温偏低,异常低温天气频发。 展开更多
关键词 北极海冰 冬季气温 气温变率 异常低温天气
下载PDF
近6a东北地区大气臭氧总量变化特征及其与气温的关系 被引量:2
6
作者 龚强 汪宏宇 +1 位作者 王盘兴 李丽平 《南京气象学院学报》 CSCD 北大核心 2004年第1期113-120,共8页
利用TOMS大气臭氧总量格点资料分析了东北地区近6a(1996年8月—2002年7月)臭氧的分布特征、季节变化、变化趋势及其对气温变化的影响,并与1979—1992年的变化情况作了对比分析。结果表明:东北地区处于北半球大气臭氧高值中心的边缘,臭... 利用TOMS大气臭氧总量格点资料分析了东北地区近6a(1996年8月—2002年7月)臭氧的分布特征、季节变化、变化趋势及其对气温变化的影响,并与1979—1992年的变化情况作了对比分析。结果表明:东北地区处于北半球大气臭氧高值中心的边缘,臭氧总量呈随纬度增加的分布形式,近6a区域年均值为361Du;冬春季总量较大、夏秋季较小,其中8月最小,3月最大;1979—1992年臭氧存在明显的下降趋势(冬季最为显著),下降趋势高纬大于低纬,近6a整个区域没有系统性下降趋势;1979—1992年对流层中下部显著变暖、对流层上层和平流层低层显著变冷,且变暖率与变冷率均随纬度增高而加大,而近6a气温变幅很小,这与臭氧变化趋势基本对应,表明臭氧的辐射加热是影响平流层低层、对流层高层温度场的重要因素,同时它对对流层低层气温的影响值得进一步关注。 展开更多
关键词 大气臭氧 年季特征 变化趋势 气温变率 东北地区
下载PDF
近百年哈尔滨气温的诊断研究 被引量:2
7
作者 刘玉莲 于宏敏 胡晓径 《黑龙江气象》 2008年第2期1-4,共4页
用SSA方法分析哈尔滨近98a月平均气温距平序列,得出哈尔滨近百年气温是增温倾向;年代际变化1909~1955年升温,1956~1969年微弱降温,1970~2006年明显升温;年际变化主要有2.315a年和4.06a振荡;月际变化主要存在8.33个月振荡。
关键词 气温变率 奇异谱分析 诊断
下载PDF
地理教学中气候图的阅读与分析
8
作者 华正杰 赵英 《干旱气象》 2001年第3期53-54,共2页
关键词 等温线 海洋性 纬度 大陆 热力学性质表 地貌 气温变率 等值图 地质图 等值线图
下载PDF
Effect of Altitude and Latitude on Surface Air Temperature across the Qinghai-Tibet Plateau 被引量:10
9
作者 WANG Keli SUN Jia +1 位作者 CHENG Guodong JIANG Hao 《Journal of Mountain Science》 SCIE CSCD 2011年第6期808-816,共9页
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across ... The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961-2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is -4.8 ℃ /km and the latitudinal effect is -0.87 ℃ /°latitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3℃/km and the effect of latitude is only -0.28℃ /°latitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is -5.0℃/km, while the effect of latitude is -1.51℃ /°latitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent bydifferences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13℃ /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33 o latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0℃ /km on the rate of warming over a hundred-year period. 展开更多
关键词 Qinghai-Tibet Plateau Surface airtemperature Vertical lapse rate ALTITUDE LATITUDE
下载PDF
Inhomogeneous trends in the onset date of extreme hot days in China over the last five decades 被引量:1
10
作者 Yang Yang Zhaohui Lin +2 位作者 Lifeng Luo Yan Zhang Zhen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期33-40,共8页
Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogen... Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogeneous trends of FirstEHD over China during 1960-2018 can be found,with the advanced trend of FirstEHD over most parts in China,while a number of stations in North-Central China(NC)show the delayed trend of FirstEHD.Moreover,there exist interdecadal changes of FirstEHD trend,with a remarkable difference in the trend magnitude before and after the 1990s over South China(SC),and the sign of trend can even reverse from negative to positive after the 1990s in Xinjiang(XJ)and Yangtze River Basin(YR),and from positive to negative in NC.The overall trends of FirstEHD over NC,YR,and XJ during 1960-2018 are dominated by the trends before the 1990s,while they are dominated by the sharp advance after the 1990s over SC.It is further found that the trend of FirstEHD can generally be explained by the long-term trend in T_(max) over most parts of China,but the contribution from T_(max) variabilities is also non-negligible and can even account for more than 75% of the overall trend over NC.The possible factors responsible for the decadal changes in FirstEHD trends are also discussed. 展开更多
关键词 Extreme hot days Onset date Trend Decadal change Variability of maximum temperature
下载PDF
Effect of Aspect on Climate Variation in Mountain Ranges of Shennongjia Massif, Central China 被引量:1
11
作者 ZHANG Yi 《Chinese Geographical Science》 SCIE CSCD 2018年第1期74-85,共12页
The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with contrasting aspects as mediated by changes in global climate. It may help predict trends of vegetatio... The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with contrasting aspects as mediated by changes in global climate. It may help predict trends of vegetation variations in native ecosystems in natural reserves. As measures of climate response, temperature and precipitation data from the north, east, and south-facing mountain ranges of Shennongjia Massif in the coldest and hottest months(January and July), different seasons(spring, summer, autumn, and winter) and each year were analyzed from a long-term dataset(1960 to 2003) to tested variations characteristics, temporal and spatial quantitative relationships of climates. The results showed that the average seasonal temperatures and precipitation in the north, east, and south aspects of the mountain ranges changed at different rates. The average seasonal temperatures change rate ranges in the north, east, and south-facing mountain ranges were from –0.0210℃/yr to 0.0143℃/yr, –0.0166℃/yr to 0.0311℃/yr, and –0.0290 ℃/yr to 0.0084℃/yr, respectively, and seasonal precipitation variation magnitude were from –1.4940 mm/yr to 0.6217 mm/yr, –1.6833 mm/yr to 2.6182 mm/yr, and –0.8567 mm/yr to 1.4077 mm/yr, respectively. The climates variation trend among the three mountain ranges were different in magnitude and direction, showing a complicated change of the climates in mountain ranges and some inconsistency with general trends in global climate change. The climate variations were significantly different and positively correlated cross mountain ranges, revealing that aspects significantly affected on climate variations and these variations resulted from a larger air circulation system, which were sensitive to global climate change. We conclude that location and terrain of aspect are the main factors affecting differences in climate variation among the mountain ranges with contrasting aspects. 展开更多
关键词 regional climate variation slope aspect Shennongjia Massif One-way ANOVA global climate change
下载PDF
Evaluating the impacts of land use and land cover changes on surface air temperature using the WRF-mosaic approach 被引量:2
12
作者 ZHAO De-Ming WU Jian 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第3期262-269,共8页
Satellite-derived land surface data in 1980 and 2010 were used to represent land use and land cover(LULC) changes caused by the rapid economic development and human activities that have occurred over the past few de... Satellite-derived land surface data in 1980 and 2010 were used to represent land use and land cover(LULC) changes caused by the rapid economic development and human activities that have occurred over the past few decades in East Asia and China. The effects of LULC changes on the radiation budget and 2-m surface air temperature(SAT) were explored for the period using the Weather Research and Forecasting(WRF) model. The mosaic approach, which considers the N-most abundant land use types within a model grid cell(here, N = 3) and precisely describes the subgridscale LULC changes, was adopted in the integrations. The impacts of LULC changes based on two 36-year integrations showed that SAT generally decreased, with the sole exception being over eastern China, resulting in decreased SAT in China(-0.062 °C) and East Asian land areas(EAL,-0.061 °C). The LULC changes induced changes in albedo, which influenced the radiation budget. The radiative forcings at the top of the atmosphere were-0.56 W m-2 across the whole of China, and-0.50 W m-2 over EAL. Meanwhile, the altered roughness length mainly influenced near-surface wind speeds, large-scale and upward moisture fluxes, latent heat fluxes, and cloud fractions at different altitudes. Though the impacts caused by the LULC changes were generally smaller at regional scales, the values at local scales were much stronger. 展开更多
关键词 Land use and land cover change surface airtemperature ALBEDO radiation budget numerical simulation
下载PDF
Trends in day-to-day variability of surface air temperature in China during 1961-2012
13
作者 LI Shang-Feng JIANG Da-Bang +1 位作者 LIAN Yi YAO Yao-Xian 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第2期122-129,共8页
Using daily mean, maximum, and minimum surface air temperature (abbreviated as Tmean, Tmax, and Tmin, respectively) data from CN05.2 and the Met Office Hadley Centre observation data-sets for 1961-2012, the trends i... Using daily mean, maximum, and minimum surface air temperature (abbreviated as Tmean, Tmax, and Tmin, respectively) data from CN05.2 and the Met Office Hadley Centre observation data-sets for 1961-2012, the trends in day-to-day variability of Tmean, Tmax, and Tmin (abbreviated as DVTFmean, DVTTmax, and DVTTmin, respectively) are examined. It is revealed that the annual trends of DVTTmean, DVTTmax, and DVTTmin are all negative in Northeast China (NEC), and more obvious in North China than in South China. Seasonal trends of DVTTmean are also negative in NEC, except in summer. For DVTTmax, trends are generally more obvious than DVTTmin in all seasons in NEC; moreover, trends in spring are obvious in both the north and the south, but trends in summer and winter are more obvious in the southern region than in the northern part. As far as DVTT-Fmin is concerned, except in autumn, seasonal trends are more obvious in the north than in other regions of the country. 展开更多
关键词 Day-to-day variability TEMPERATURE TREND China
下载PDF
Sensitivity of the Terrestrial Ecosystem to Precipitation and Temperature Variability over China
14
作者 SUN Guo-Dong 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期382-387,共6页
In this study, the sensitivities of net primary production(NPP), soil carbon, and vegetation carbon to precipitation and temperature variability over China are discussed using the state-of-the-art Lund-Potsdam-Jena dy... In this study, the sensitivities of net primary production(NPP), soil carbon, and vegetation carbon to precipitation and temperature variability over China are discussed using the state-of-the-art Lund-Potsdam-Jena dynamic global vegetation model(LPJ DGVM). The impacts of the sensitivities to precipitation variability and temperature variability on NPP, soil carbon, and vegetation carbon are discussed. It is shown that increasing precipitation variability, representing the frequency of extreme precipitation events, leads to losses in NPP, soil carbon, and vegetation carbon over most of China, especially in North and Northeast China where the dominant plant functional types(i.e., those with the largest simulated areal cover) are grass and boreal needle-leaved forest. The responses of NPP, soil carbon, and vegetation carbon to decreasing precipitation variability are opposite to the responses to increasing precipitation variability. The variations in NPP, soil carbon, and vegetation carbon in response to increasing and decreasing precipitation variability show a nonlinear asymmetry. Increasing precipitation variability results in notable interannual variation of NPP. The sensitivities of NPP, soil carbon, and vegetation carbon to temperature variability, whether negative or positive, meaning frequent hot and cold days, are slight. The present study suggests, based on the LPJ model, that precipitation variability has a more severe impact than temperature variability on NPP, soil carbon, and vegetation carbon. 展开更多
关键词 climate variability net primary production(NPP) soil carbon vegetation carbon sensitivity
下载PDF
How similar are annual and summer temperature variability in central Sweden?
15
作者 ZHANG Peng Deliang CHEN +1 位作者 Hans W.LINDERHOLM ZHANG Qiong 《Advances in Climate Change Research》 SCIE CSCD 2015年第3期159-170,共12页
Tree-ring based temperature reconstructions have successfully inferred the past inter-annual to millennium scales summer temperature variability. A clear relationship between annual and summer temperatures can provide... Tree-ring based temperature reconstructions have successfully inferred the past inter-annual to millennium scales summer temperature variability. A clear relationship between annual and summer temperatures can provide insights into tile variability of past annual mean tem- perature from the reconstructed summer temperature. However, how similar are summer and annual temperatures is to a large extent still unknown. This study aims at investigating the relationship between annual and summer temperatures at different timescales in central Sweden during the last millennium. The temperature variability in central Sweden can represent large parts of Scandinavia which has been a key region for dendroclimatological research. The observed annual and summer temperatures during 1901-2005 were firstly decomposed into different frequency bands using ensemble empirical mode decomposition (EEMD) method, and then the scale-dependent relationship was quantified using Pearson correlation coefficients. The relationship between the observed annual and summer temperatures determined by the instrumental data was subsequently used to evaluate 7 climate models. The model with the best performance was used to infer the relationship for the last millennium. The results show that the relationship between the observed annual and summer temperatures becomes stronger as the timescale increases, except for the 4--16 years timescales at which it does not show any relationship. The summer temperature variability at short timescales (2--4 years) shows much higher variance than the annual variability, while the annual temperature variability at long timescales (〉32 years) has a much higher variance than the summer one. During the last millennium, the simulated summer temperature also shows higher variance at the short timescales (2-4 years) and lower variance at the long timescales (〉1024 years) than those of the annual temperature. The relationship between the two temperatures is generally close at the long timescales, and weak at the short timescales. Overall the summer temperature variability cannot well reflect the annual mean temperature variability for the study region during both the 20th century and the last millennium. Furthermore, all the climate models examined overestimate the annual mean temperature variance at the 2--4 years timescales, which indicates that the overestimate could be one of reasons why the volcanic eruption induced cooling is larger in climate models than in proxy data. 展开更多
关键词 Annual temperature Summer temperature Central Sweden Climate model simulation Scale-dependent similarity
下载PDF
ENSO Variability Simulated by a Coupled General Circulation Model:ECHAM5/MPI-OM
16
作者 ZHENG Fei 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期471-475,共5页
The accurate simulation of the equatorial sea surlhce temperature (SST) variability is crucial for a proper representation or prediction of the El Nino-Southern Os- cillation (ENSO). This paper describes the trop... The accurate simulation of the equatorial sea surlhce temperature (SST) variability is crucial for a proper representation or prediction of the El Nino-Southern Os- cillation (ENSO). This paper describes the tropical variability simulated by the Max Planck Institute (MPI) forr meteorology coupled atmosphere-ocean general circulation model (CGCM). A control simulation with pre-industrial greenhouse gases is analyzed, and the simulation of key oceanic features, such as SST, is compared with observa- tions. Results from the 400-yr control simulation show that the model's ENSO variability is quite realistic in terms of structure, strength, and period. Also, two related features (the annual cycle of SST and the-phase locking of ENSO events), which are significant in determining the model's performance of realistic ENSO prediction, are further validated to be well reproduced by the MPI cli mate model, which is an atmospheric model ECHAM5 (which fuses the EC tbr European Center and HAM for Hamburg) coupled to an MPI ocean model (MPI-OM), ECHAMS/MPI-OM. 展开更多
关键词 ENSO variability CGCM ECHAM5/MPI-OM
下载PDF
Impact of Different Aerosols on the Evolution of the Atmospheric Boundary Layer 被引量:1
17
作者 Sun Dan Duan Min-Zheng +3 位作者 Lv Da-Ren Wang Pu-Cai Wang Yong Zhang Xiao-Ling 《Atmospheric and Oceanic Science Letters》 2012年第2期82-87,共6页
The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to dev... The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height. 展开更多
关键词 AEROSOLS atmospheric boundary layer radia-tion
下载PDF
哀牢山和玉龙雪山不同海拔林内外温湿特征比较 被引量:1
18
作者 张鹏 张一平 +4 位作者 宋清海 许琨 黄华 刘维暐 罗奇 《生态学杂志》 CAS CSCD 北大核心 2020年第2期434-443,共10页
以哀牢山和玉龙雪山不同海拔森林生态系统为研究对象,利用各海拔的林内、外气温、相对湿度观测数据,比较分析了两地不同海拔林内、外小气候特征及其变化规律。结果表明,哀牢山、玉龙雪山各海拔的林内、外气温年变化趋势均呈倒U型,雨季(5... 以哀牢山和玉龙雪山不同海拔森林生态系统为研究对象,利用各海拔的林内、外气温、相对湿度观测数据,比较分析了两地不同海拔林内、外小气候特征及其变化规律。结果表明,哀牢山、玉龙雪山各海拔的林内、外气温年变化趋势均呈倒U型,雨季(5—10月)高于干季(11—4月),林外气温高于林内。哀牢山各海拔森林对气温影响(林内外气温差)强于玉龙雪山。林内外气温差绝对值一般随海拔增加而增大。年尺度上,哀牢山林内气温低于林外,玉龙雪山除3540 m也低于林外,显示出两种山地森林具有一定的降温调节作用。哀牢山年林内气温随海拔高度递减比率(0.52℃·100 m-1)略大于林外(0.50℃·100m-1),均小于玉龙雪山(林内为0.55℃·100 m-1、林外为0.56℃·100 m-1)。哀牢山、玉龙雪山各海拔林内、外相对湿度年变化趋势也呈倒U型,雨季大于干季,林外低于林内。年尺度上,高海拔的相对湿度较大。总体上,哀牢山、玉龙雪山森林兼有调节气温和相对湿度的作用,哀牢山森林对降低气温的调节能力更强,玉龙雪山森林增湿调节能力更强。 展开更多
关键词 小气候效应 海拔 山地森林 气温垂直变率 哀牢山 玉龙雪山
原文传递
Rates of temperature change in China during the past 2000 years 被引量:18
19
作者 GE QuanSheng ZHANG XueZhen +1 位作者 HAO ZhiXin ZHENG JingYun 《Science China Earth Sciences》 SCIE EI CAS 2011年第11期1627-1634,共8页
Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at... Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at the 100-year scale, the warming rate for the whole of China in the 20th century was only 0.6±1.6℃/100 a (interval at the 95% confidence level, which is used here- after), while the peak warming rate for the period from the Little Ice Age (LIA) to the 20th century reached 1.1_+1.2~C/100 a, which was the greatest in the past 500 years and probably the past 2000 years. At the 30-year scale, warming in the 20th century was quite notable, but the peak rate was still less than rates for previous periods, such as the rapid warming from the LIA to the 20th century and from the 270s-290s to 300s-320s. At the 10-year scale, the warming in the late 20th century was very evident, but it might not be unusual in the context of warming over the past 500 years. The exact timing, duration and magnitude of the warming peaks varied from region to region at all scales. The peak rates of the 100-year scale warming in the AD 180s-350s in northeastern China as well as those in the 260s-410s and 500s-660s in Tibet were all greater than those from the mid-19th to 20th century. Meanwhile, the rates of the most rapid cooling at scales of 30 to 100 years in the LIA were promi-nent, but they were also not unprecedented in the last 2000 years. At the 10-year scale, for the whole of China, the most rapid decadal cooling in the 20th century was from the 1940s to 1950s with a rate of -0.3±0.6℃/10 a, which was similar to rates for periods before the 20th century. For all regions, the rates of most rapid cooling in the 20th century were all less than those for previous periods. 展开更多
关键词 China past 2000 years rates of temperature change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部