This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternati...This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.展开更多
Several food companies are implementing effective strategies to evaluate the environmental impacts of their products or processes and to estimate the greenhouse gases emissions (GHG) using a life cycle approach. Par...Several food companies are implementing effective strategies to evaluate the environmental impacts of their products or processes and to estimate the greenhouse gases emissions (GHG) using a life cycle approach. Particularly, a sector which can play an important role to reduce the impact on the environment through the life cycle thinking is the beverage packaging. In this context, the aim of this study was to use the life cycle assessment (LCA) method to investigate the consistency of the preference order across two alternative beverage packages through the application of two impact assessment methods, namely the IPCC 2007 which is focused on the GHG emissions estimation and the EcoIndicator 99 which considers several environmental categories including impact on climate change. The results showed that the life cycle approach employment was a useful strategy to investigate the consistency of the preference order across two beverage packages, especially, whether the results are made more reliable by the utilization of primary data. The investigation on climate change conducted on two level, initially, the quantification of the GHG emissions and secondly the estimation of the related diseases and mortality, demonstrated that the laminated carton presents lower impacts than the high-density polyethylene (HDPE) bottle.展开更多
文摘This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.
文摘Several food companies are implementing effective strategies to evaluate the environmental impacts of their products or processes and to estimate the greenhouse gases emissions (GHG) using a life cycle approach. Particularly, a sector which can play an important role to reduce the impact on the environment through the life cycle thinking is the beverage packaging. In this context, the aim of this study was to use the life cycle assessment (LCA) method to investigate the consistency of the preference order across two alternative beverage packages through the application of two impact assessment methods, namely the IPCC 2007 which is focused on the GHG emissions estimation and the EcoIndicator 99 which considers several environmental categories including impact on climate change. The results showed that the life cycle approach employment was a useful strategy to investigate the consistency of the preference order across two beverage packages, especially, whether the results are made more reliable by the utilization of primary data. The investigation on climate change conducted on two level, initially, the quantification of the GHG emissions and secondly the estimation of the related diseases and mortality, demonstrated that the laminated carton presents lower impacts than the high-density polyethylene (HDPE) bottle.