为探明典型浓度路径下(高端路径RCP8.5和稳定路径RCP4.5)长江中下游地区未来30a平均气温的时空变化趋势和分布特征,运用联合国政府间气候变化委员会(IPCC)AR5提出的模拟能力较强的BCC-CSM1-1(Beijing Climate Center Climate System Mod...为探明典型浓度路径下(高端路径RCP8.5和稳定路径RCP4.5)长江中下游地区未来30a平均气温的时空变化趋势和分布特征,运用联合国政府间气候变化委员会(IPCC)AR5提出的模拟能力较强的BCC-CSM1-1(Beijing Climate Center Climate System Model version1-1)气候系统模式,基于典型浓度情景RCP(Representative Concentration Pathway)输出的2021-2050年0.5×0.5格点主要气象要素的逐日模式模拟数据资料,应用双线性内插法降尺度到长江中下游及邻近区域62个基本气象站点。以1961-1990为基准年,根据同期等长模拟数据和观测数据的非线性函数关系建立订正模型,并利用方差订正法对2021-2050年模拟数据进行误差订正。结果表明:RCP情景输出数据的模拟效果良好,方差订正可降低模拟值与观测值的相对误差和方差,更加真实反应未来气候变化趋势。RCP8.5和RCP4.5两种排放情景下,长江中下游地区2021-2050年年平均气温均呈显著上升趋势,增温幅度总体表现为自南向北逐渐减少。就季节而言,四季均呈现升温趋势,夏季增温幅度最高,变化倾向率大,春冬两季RCP8.5情景下增温幅度大于RCP4.5下,夏秋季则相反;RCP8.5情景下,研究区域年平均气温呈现自中部向东西递减,春夏季增温幅度高于秋季,冬季增温幅度最小,且变化倾向率低,大部分地区未通过0.05水平的显著性检验。RCP4.5情景下,研究区年平均气温自北向南逐渐降低,变化倾向率则表现为北部大于南部,夏季变化速率较大,增温幅度达1.2℃·10a^(-1)(P<0.01),冬季较小且未通过显著性检验。展开更多
CBM has been recognized as a significant natural gas resource for a long time. Recently, CO_2 sequestration in coalbeds for ECBM has been attracting growing attention because of greater concerns about the effects of g...CBM has been recognized as a significant natural gas resource for a long time. Recently, CO_2 sequestration in coalbeds for ECBM has been attracting growing attention because of greater concerns about the effects of greenhouse gases and the emerging commercial significance of CBM. Reservoir-simulation technology,as a useful tool of reservoir development, has the capability to provide us with an economic means to solve complex reservoir-engineering problems with efficiency. The pore structure of coal is highly heterogeneous, and the heterogeneity of the pores depends on the coal type and rank.展开更多
Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4...Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900).展开更多
In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by ...In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project,focusing on model-data comparison.The results showed that the PMIP models produced greater ocean cooling in the North Pacific and Tropical Ocean than the MARGO,particularly in the northwestem Pacific,where the modeldata mismatch was larger.All the models failed to capture the anomalous east-west SST gradient in the North Atlantic.In addition,large discrepancies among the models were observed in the mid-latitude ocean,particularly with models in the second phase of the PMIP.Although these models showed better agreement with the MARGO,the latest models in the third phase of the PMIP did not show substantial progresses in simulating LGM ocean surface conditions.That is,improvements in the modeling community are still needed to describe SST for a better understanding of climate during the LGM.展开更多
文摘为探明典型浓度路径下(高端路径RCP8.5和稳定路径RCP4.5)长江中下游地区未来30a平均气温的时空变化趋势和分布特征,运用联合国政府间气候变化委员会(IPCC)AR5提出的模拟能力较强的BCC-CSM1-1(Beijing Climate Center Climate System Model version1-1)气候系统模式,基于典型浓度情景RCP(Representative Concentration Pathway)输出的2021-2050年0.5×0.5格点主要气象要素的逐日模式模拟数据资料,应用双线性内插法降尺度到长江中下游及邻近区域62个基本气象站点。以1961-1990为基准年,根据同期等长模拟数据和观测数据的非线性函数关系建立订正模型,并利用方差订正法对2021-2050年模拟数据进行误差订正。结果表明:RCP情景输出数据的模拟效果良好,方差订正可降低模拟值与观测值的相对误差和方差,更加真实反应未来气候变化趋势。RCP8.5和RCP4.5两种排放情景下,长江中下游地区2021-2050年年平均气温均呈显著上升趋势,增温幅度总体表现为自南向北逐渐减少。就季节而言,四季均呈现升温趋势,夏季增温幅度最高,变化倾向率大,春冬两季RCP8.5情景下增温幅度大于RCP4.5下,夏秋季则相反;RCP8.5情景下,研究区域年平均气温呈现自中部向东西递减,春夏季增温幅度高于秋季,冬季增温幅度最小,且变化倾向率低,大部分地区未通过0.05水平的显著性检验。RCP4.5情景下,研究区年平均气温自北向南逐渐降低,变化倾向率则表现为北部大于南部,夏季变化速率较大,增温幅度达1.2℃·10a^(-1)(P<0.01),冬季较小且未通过显著性检验。
文摘CBM has been recognized as a significant natural gas resource for a long time. Recently, CO_2 sequestration in coalbeds for ECBM has been attracting growing attention because of greater concerns about the effects of greenhouse gases and the emerging commercial significance of CBM. Reservoir-simulation technology,as a useful tool of reservoir development, has the capability to provide us with an economic means to solve complex reservoir-engineering problems with efficiency. The pore structure of coal is highly heterogeneous, and the heterogeneity of the pores depends on the coal type and rank.
基金Acknowledgments This research was jointly supported by the National Key Research and Development Program of China (2016YFA0600701), the National Natural Science Foundation of China (41675069), and the Climate Change Specific Fund of China (CCSF201731).
文摘Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900).
基金supported by the National Basic Research Program of China(2010CB951901)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05120703)+2 种基金the National Natural Science Foundation of China(41205051)supported by CEA(Centre dEtudes Atomiques),CNRS(Centre National de la Recherche Scientifique),the EU(European Union)project MOTIF(EVK2-CT-2002-00153)the Programme National d'Etude de la Dynamique du Climat(PNEDC)
文摘In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project,focusing on model-data comparison.The results showed that the PMIP models produced greater ocean cooling in the North Pacific and Tropical Ocean than the MARGO,particularly in the northwestem Pacific,where the modeldata mismatch was larger.All the models failed to capture the anomalous east-west SST gradient in the North Atlantic.In addition,large discrepancies among the models were observed in the mid-latitude ocean,particularly with models in the second phase of the PMIP.Although these models showed better agreement with the MARGO,the latest models in the third phase of the PMIP did not show substantial progresses in simulating LGM ocean surface conditions.That is,improvements in the modeling community are still needed to describe SST for a better understanding of climate during the LGM.