The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MK II in a cloud-free and nonfrontal dust condition on 24 April...The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MK II in a cloud-free and nonfrontal dust condition on 24 April 2006. The total dust column was calculated by using an integration method of the particle size distribution; the mean value was 1.42±0.30 g m 2. A linear correlation between the total dust column and the aerosol optical depth (AOD) with a linear factor of 2.7 g m 2 over the Sahara was applied to calculate the total dust column in this study; the results were lower than these calculated by the integration method. A reasonable factor of 3.2 g m^-2 was achieved by minimizing the standard deviation (SD) of the two methods. The two layers model, which includes the deposition processes of turbulent transfer, Brownian diffusion, impaction and gravitational settling over the sea's surface, was used to calculate the dry deposition flux; the mean value was 5.05±2.49 μg m^-2 s^-1. A correlation among the total dust column, dry deposition flux, AOD, and effective radius was discussed. The correlation between the total better than that between dust column and the AOD was the total dust column and the effective radius; however, the correlation between the dry deposition flux and the effective radius was better than that between the dry deposition flux and the AOD.展开更多
This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the ...This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research.展开更多
A Local Ensemble Transform Kalman Filter assimilation system has been implemented into an aerosol-coupled global nonhydrostatic model to simulate the aerosol mass concentration and aerosol optical properties of 3 dese...A Local Ensemble Transform Kalman Filter assimilation system has been implemented into an aerosol-coupled global nonhydrostatic model to simulate the aerosol mass concentration and aerosol optical properties of 3 desert sites(Ansai, Fukang, Shapotou) in northwestern China. One-month experiment results of April 2006 reveal that the data assimilation can correct the much overestimated aerosol surface mass concentration, and has a strong positive effect on the aerosol optical depth(AOD) simulation, improving agreement with observations. Improvement is limited with the?ngstr€om Exponent(AE) simulation, except for much improved correlation coefficient and model skill scores over the Ansai site. Better agreement of the AOD spatial distribution with the independent observations of Terra(Deep Blue) and Multi-angle Imaging Spectroradiometer(MISR) AODs is obtained by assimilating the Moderate Resolution Imaging Spectroradiometer(MODIS) AOD product, especially for regions with AODs lower than 0.30. This study confirms the usefulness of the remote sensing observations for the improvement of global aerosol modeling.展开更多
Based on the optimal estimation method, a satellite XCO2 retrieval algorithm was constructed by combining LBLRTM with VLIDORT. One-year GOSAT/TANSO observations over four TCCON stations were tested by our algorithm, a...Based on the optimal estimation method, a satellite XCO2 retrieval algorithm was constructed by combining LBLRTM with VLIDORT. One-year GOSAT/TANSO observations over four TCCON stations were tested by our algorithm, and retrieval results were compared with GOSAT L2 B products and ground-based FTS measurements. Meanwhile, the influence of CO2 line mixing effect on retrieval was estimated, and the research showed that neglecting CO2 line mixing effect could result in approximately 0.25% XCO2 underestimation. The accuracy of XCO2 retrievals was similar to GOSAT L2 B products at cloud-free footprints with aerosol optical depth less than 0.3, and 1% accuracy of XCO2 retrievals can be reached based on the validation result with TCCON measurements.展开更多
Sun-photometer measurements at Hefei,an urban site located in central East China,were examined to investigate the variations of aerosol loading and optical properties.It is found that aerosol optical thickness(AOT)kee...Sun-photometer measurements at Hefei,an urban site located in central East China,were examined to investigate the variations of aerosol loading and optical properties.It is found that aerosol optical thickness(AOT)keeps higher in winter/spring and gets relatively lower in summer/autumn.The large AOT in winter is caused by anthropogenic sulfate/nitrate aerosols,while in spring dust particles elevate the background aerosol loading and the excessive fine-mode particles eventually lead to severe pollution.There is a dramatic decline of AOT during summer,with monthly averaged AOT reaching the maximum in June and soon the minimum in August.Meanwhile,aerosol size decreases consistently and single scattering albedo(SSA)reaches its minimum in July.During summertime large-sized particles play a key role to change the air from clean to mild-pollution situation,while the presence of massive small-sized particles makes the air being even more polluted.These complicated summer patterns are possibly related to the three key processes that are active in the high temperature/humidity environment concentrating on sulfate/nitrate aerosols,i.e.,gas-to-particle transformation,hygroscopic growth,and wet scavenging.Regardless of season,the increase of SSA with increasing AOT occurs across the visible and near-infrared bands,suggesting the dominant negative/cooling effect with the elevated aerosol loading.The SSA spectra under varying AOT monotonically decrease with wavelength.The relatively large slope arises in summer,reinforcing the dominance of sulfate/nitrate aerosols that induce severe pollution in summer season around this city.展开更多
基金funded by the National BasicResearch Program of China (Grant No. 2006CB403702)the Public Meteorology Special Foundation of Ministry of Science and Technology (Grant No. GYHY200706036)the National Natural Science Foundation of China (Grant No. 60638020)
文摘The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MK II in a cloud-free and nonfrontal dust condition on 24 April 2006. The total dust column was calculated by using an integration method of the particle size distribution; the mean value was 1.42±0.30 g m 2. A linear correlation between the total dust column and the aerosol optical depth (AOD) with a linear factor of 2.7 g m 2 over the Sahara was applied to calculate the total dust column in this study; the results were lower than these calculated by the integration method. A reasonable factor of 3.2 g m^-2 was achieved by minimizing the standard deviation (SD) of the two methods. The two layers model, which includes the deposition processes of turbulent transfer, Brownian diffusion, impaction and gravitational settling over the sea's surface, was used to calculate the dry deposition flux; the mean value was 5.05±2.49 μg m^-2 s^-1. A correlation among the total dust column, dry deposition flux, AOD, and effective radius was discussed. The correlation between the total better than that between dust column and the AOD was the total dust column and the effective radius; however, the correlation between the dry deposition flux and the effective radius was better than that between the dry deposition flux and the AOD.
基金jointly supported by the National Key Research and Development Program of China [grant number2016YFE0201400]the Basic Research Program of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences [grant number 7-082999]
文摘This analysis of the multi-model aerosol optical depth (AOD) in eastern China using the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets shows that the global models underestimate the AOD by 33% and 44% in southern and northern China, respectively, and decrease the relative humidity (RH) of the air in the surface layer to 71%–80%, which is less than the RH of 77%–92% in reanalysis meteorological datasets. This indicates that the low biases in the RH partially account for the errors in the AOD. The AOD is recalculated based on the model aerosol concentrations and the reanalysis humidity data. Improving the mean value of the RH increases the multi-model annual mean AOD by 45% in southern China and by 33% in June–August in northern China. This method of improving the AOD is successful in most of the ACCMIP models, but it is unlikely to be successful in GISS-E2-R, in which the plot of its AOD efficiency against RH strongly deviates from the rest of the models. The effect of the improvement in the modeled RH on the AOD depends on the concentration of aerosols. The shape error in the frequency distribution of the RH is likely to be more important than the error in the mean value of the RH, but this requires further research.
基金supported by the funds from the National Natural Science Funds of China (41475031, 41130104)the Public Meteorology Special Foundation of MOST (GYHY201406023)+1 种基金the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(15K02ESPCP)the JAXA/Earth CARE, the MEXT/VL for Climate System Diagnostics, the MOE/Global Environment Research Fund S-12 (14426634)and A-1101, the NIES/GOSAT, theS/ NIECGER, and the MEXT/RECCA/SALSA
文摘A Local Ensemble Transform Kalman Filter assimilation system has been implemented into an aerosol-coupled global nonhydrostatic model to simulate the aerosol mass concentration and aerosol optical properties of 3 desert sites(Ansai, Fukang, Shapotou) in northwestern China. One-month experiment results of April 2006 reveal that the data assimilation can correct the much overestimated aerosol surface mass concentration, and has a strong positive effect on the aerosol optical depth(AOD) simulation, improving agreement with observations. Improvement is limited with the?ngstr€om Exponent(AE) simulation, except for much improved correlation coefficient and model skill scores over the Ansai site. Better agreement of the AOD spatial distribution with the independent observations of Terra(Deep Blue) and Multi-angle Imaging Spectroradiometer(MISR) AODs is obtained by assimilating the Moderate Resolution Imaging Spectroradiometer(MODIS) AOD product, especially for regions with AODs lower than 0.30. This study confirms the usefulness of the remote sensing observations for the improvement of global aerosol modeling.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA12A104-3)the Strategic Priority Research Program(Grant No.XDA05100300)+4 种基金the European Commission’s Seventh Framework Program"PANDA"(Grant No.FP7-SPACE-2013-1)the Public Industry-specific Fund for Meteorology(Grant No.GYHY201106045)the 4th and 5th GOSAT/TANSO Joint Research Project,National Basic Research Program of China(Grant No.2013CB955801)National Natural Science Foundation of China(Grant No.41175030)China Earth Observation Project(Grant No.E310/1112)
文摘Based on the optimal estimation method, a satellite XCO2 retrieval algorithm was constructed by combining LBLRTM with VLIDORT. One-year GOSAT/TANSO observations over four TCCON stations were tested by our algorithm, and retrieval results were compared with GOSAT L2 B products and ground-based FTS measurements. Meanwhile, the influence of CO2 line mixing effect on retrieval was estimated, and the research showed that neglecting CO2 line mixing effect could result in approximately 0.25% XCO2 underestimation. The accuracy of XCO2 retrievals was similar to GOSAT L2 B products at cloud-free footprints with aerosol optical depth less than 0.3, and 1% accuracy of XCO2 retrievals can be reached based on the validation result with TCCON measurements.
基金support on PREDE data and the two reviewers for their valuable suggestionssupported by the National Natural Science Foundation of China(Grant Nos.41175032&41575019)
文摘Sun-photometer measurements at Hefei,an urban site located in central East China,were examined to investigate the variations of aerosol loading and optical properties.It is found that aerosol optical thickness(AOT)keeps higher in winter/spring and gets relatively lower in summer/autumn.The large AOT in winter is caused by anthropogenic sulfate/nitrate aerosols,while in spring dust particles elevate the background aerosol loading and the excessive fine-mode particles eventually lead to severe pollution.There is a dramatic decline of AOT during summer,with monthly averaged AOT reaching the maximum in June and soon the minimum in August.Meanwhile,aerosol size decreases consistently and single scattering albedo(SSA)reaches its minimum in July.During summertime large-sized particles play a key role to change the air from clean to mild-pollution situation,while the presence of massive small-sized particles makes the air being even more polluted.These complicated summer patterns are possibly related to the three key processes that are active in the high temperature/humidity environment concentrating on sulfate/nitrate aerosols,i.e.,gas-to-particle transformation,hygroscopic growth,and wet scavenging.Regardless of season,the increase of SSA with increasing AOT occurs across the visible and near-infrared bands,suggesting the dominant negative/cooling effect with the elevated aerosol loading.The SSA spectra under varying AOT monotonically decrease with wavelength.The relatively large slope arises in summer,reinforcing the dominance of sulfate/nitrate aerosols that induce severe pollution in summer season around this city.