Mass concentrations of Total Suspended Particles (TSP) and size-segregated particles were obtained from July 2001 to June 2002 in Qingdao to characterize the seasonal variations of atmospheric aerosols and to show t...Mass concentrations of Total Suspended Particles (TSP) and size-segregated particles were obtained from July 2001 to June 2002 in Qingdao to characterize the seasonal variations of atmospheric aerosols and to show the impact of dust events on the air quality in Qingdao. Data on size-segregated aerosols show that 73.74% of the TSP mass concentration is contributed by particles with diameters less than 11 μm. Particles with diameters less than 1.1μm have a higher concentration during the winter. In spring, larger particles tend to have higher mass concentrations. Bimodal particle size distributions have been observed, with maxima around 4.7-7 μand 0.43-0.65 μm in the winter season, and 7-11 μm and 0.65-1.1 μm in the autumn season. Measurements made during the dust events in March 2002 show high concentrations of particles in the size range 2.1-7μm.展开更多
Aerosol is an important component of the atmosphere,and its source,composition,distribution,and effects are highly complicated.Governments and scientists have given much attention to aerosol problems,and it has become...Aerosol is an important component of the atmosphere,and its source,composition,distribution,and effects are highly complicated.Governments and scientists have given much attention to aerosol problems,and it has become a hot topic due to the important role it plays in climate change and the Earth's environment.In this paper,1) the importance of aerosol in climate change,the atmospheric environment,and human health is summarized;2) the recent serious problems of aerosol pollution and the shortage of current aerosol research in China are pointed out;and 3) the necessity to enhance aerosol research in China is emphasized.展开更多
The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model ...The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model results show that, relative to 1850, the multi-model and annual mean aerosol ERF for the year 2005 is -4.14 W m^-2 at the top of the atmosphere over eastern China (20°-45°N, 105°-122.5°E). As a result of this ERF, the multi-model and annual mean surface air temperature change in eastern China during 1850-2005 is -1.05℃, leading to a climate sensitivity of 0.24℃/ (Wm^-2) in this region.展开更多
Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley...Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.展开更多
Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduc...Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduction, this paper give1 a brief introduction to the sources and global distribution of BC. Along with the decrease of BC emissions from sue1 actions as the reduction of global greenhouse gases (GHGs) and regulating local air quality, it also highlights othet BC reduction approaches such as control and improvement of combustion conditions, the elimination of open biomas burning, and the sequestration of BC by biomass pyrolysis. Finally, it is stressed that at this moment there is no enougt reason to push BC reduction into any climate change related negotiations, although BC has been included in some o so-called win-win reduction targets for the quick response to both climate and non-climate appeals.展开更多
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
Data on aerosol optical thickness(AOT) and single scattering albedo(SSA) derived from Moderate Resolution Imaging Spectrometer(MODIS) and Ozone Monitoring Instrument(OMI) measurements,respectively,are used jointly to ...Data on aerosol optical thickness(AOT) and single scattering albedo(SSA) derived from Moderate Resolution Imaging Spectrometer(MODIS) and Ozone Monitoring Instrument(OMI) measurements,respectively,are used jointly to examine the seasonal variations of aerosols over East Asia.The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean.These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast,the small-sized aerosols represented by the fine-mode AOT,which are primarily generated over the land by human activities,do not have evident seasonalscale fluctuations.A persistent maximum of aerosol loadings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year.Most regions exhibit a general spring maximum. During the summer,however,the aerosol loadings are the most marked over north central China.This occurrence may result from anthropogenic fine particles,such as sulfate and nitrate.Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA.Over southwestern and southeastern China,if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However,more substantial aerosol loadings probably represent less-absorptive aerosols.The opposite covariation pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols.North central China is strongly affected by dust aerosols that show moderate absorption.This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.展开更多
UV radiation plays an important role in climate change and photochemical reactions,and in Ecosystem Research.In this study,the authors presented study results of China’s National Basic Research Program Study on the c...UV radiation plays an important role in climate change and photochemical reactions,and in Ecosystem Research.In this study,the authors presented study results of China’s National Basic Research Program Study on the climatic characteristics and reconstruction method of UV radiation in China.The spatiotemporal variation of UV radiation in China has been discussed,and then an effcient modeling method has been established to obtain history UV radiation data to analyse the variation trends of UV radiation in China.Finally,the influence of aerosol,cloud,ozone,and water vapor on UV radiation has been discussed.展开更多
In this study,a general circulation model coupled with a gas-phase module and an aerosol chemistry module was employed to investigate the impacts of anthropogenic emission sectors on aerosol direct radiative forcing a...In this study,a general circulation model coupled with a gas-phase module and an aerosol chemistry module was employed to investigate the impacts of anthropogenic emission sectors on aerosol direct radiative forcing at the top of atmosphere (TOA) in the present-day climate.The predictions were based on the emission inventories developed in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5).Six emission sectors-agriculture,open biomass burning,domestic activities,industry,energy generation,and transport-were considered,with a special focus on nitrate aerosol that shows large uncertainties in current models.The results show that the energy sector accounts for the largest contribution (-222 mW m-2) to global aerosol radiative forcing,with substantial negative forcing from sulfate.Inclusion of nitrate results in the transport sector yielding a global nitrate radiative forcing of-92 mW rm-2 and an internally mixed aerosol radiative forcing of-85 mW m-2,which is opposite to the positive radiative forcing predicted in the past,indicating that the transport emissions could not be a potential control target to counteract climate warming as expected before.The maximum change in nitrate burden is found to be associated with agricultural emissions,which accounts for about 75% of global ammonia gas (NH3) emissions.Agricultural emissions account for global nitrate radiative forcing of-186 mW m-2 and internally mixed aerosols direct radiative forcing of-149 mW m-2.Such agricultural radiative forcing exceeds the radiative forcing of the industrial sector and is responsible for a large portion of negative radiative forcing over the Northern Hemisphere.展开更多
The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of...The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of 1998-2004. The stratospheric aerosol distributions exhibited hemispheric asymmetry between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In the lower stratosphere below 20 km, the zonal averaged aerosol optical depths in the NH were higher than those of the corresponding SH; whereas at higher altitudes above 20 km, the optical depths in the SH-- except the equatorial region--were higher than those of the NH. At 0-10°N and 10-20°N, the stratospheric aerosol optical depth (SAOD) exhibited larger values in boreal winter and lower values in the spring and summer; at 0-10°S and 10-20°S, the SAOD presented small seasonal variations. At 30-40°N, the SAOD presented larger values in the boreal fall and winter and lower values in the spring and summer; while at 30-40°S, the SAOD exhibited larger values in the austral winter and early spring and lower values in the summer and fall. These characteristics can mainly be attributed to the seasonal cycle of the dynamic transport, and the effects of the buildup and breakdown of the polar vortex. At 50-60°S, the SAOD exhibited extremely high values during austral winter associated with the Antarctic polar vortex boundary; at 50-60°N, the SAOD also exhibited larger values during the boreal winter, but it was much less obvious than that of its southern counterpart.展开更多
Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of ...Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.展开更多
Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing s...Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.展开更多
Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth...Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.展开更多
基金This study is supported by National Natural Science Foundation of China(No.40490262).
文摘Mass concentrations of Total Suspended Particles (TSP) and size-segregated particles were obtained from July 2001 to June 2002 in Qingdao to characterize the seasonal variations of atmospheric aerosols and to show the impact of dust events on the air quality in Qingdao. Data on size-segregated aerosols show that 73.74% of the TSP mass concentration is contributed by particles with diameters less than 11 μm. Particles with diameters less than 1.1μm have a higher concentration during the winter. In spring, larger particles tend to have higher mass concentrations. Bimodal particle size distributions have been observed, with maxima around 4.7-7 μand 0.43-0.65 μm in the winter season, and 7-11 μm and 0.65-1.1 μm in the autumn season. Measurements made during the dust events in March 2002 show high concentrations of particles in the size range 2.1-7μm.
基金supported by the National Basic Research Program of China(2012CB955303)the National Natural Science Foundation of China(41175131)
文摘Aerosol is an important component of the atmosphere,and its source,composition,distribution,and effects are highly complicated.Governments and scientists have given much attention to aerosol problems,and it has become a hot topic due to the important role it plays in climate change and the Earth's environment.In this paper,1) the importance of aerosol in climate change,the atmospheric environment,and human health is summarized;2) the recent serious problems of aerosol pollution and the shortage of current aerosol research in China are pointed out;and 3) the necessity to enhance aerosol research in China is emphasized.
基金supported by the National Basic Research Program of China[973 Program,grant number 2014CB441202]the National Natural Science Foundation of China[grant numbers41475137 and 91544219]
文摘The effective radiative forcing (ERF) and associated surface air temperature change over eastern China are estimated using multi-model results from CMIP5 (Coupled Model Intercomparison Project Phase 5). The model results show that, relative to 1850, the multi-model and annual mean aerosol ERF for the year 2005 is -4.14 W m^-2 at the top of the atmosphere over eastern China (20°-45°N, 105°-122.5°E). As a result of this ERF, the multi-model and annual mean surface air temperature change in eastern China during 1850-2005 is -1.05℃, leading to a climate sensitivity of 0.24℃/ (Wm^-2) in this region.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-03)
文摘Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.
基金co-supported by China 973 project of MOST(2011CB403401)China Postdoctoral Science Foundation(20080440463,200902157)
文摘Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduction, this paper give1 a brief introduction to the sources and global distribution of BC. Along with the decrease of BC emissions from sue1 actions as the reduction of global greenhouse gases (GHGs) and regulating local air quality, it also highlights othet BC reduction approaches such as control and improvement of combustion conditions, the elimination of open biomas burning, and the sequestration of BC by biomass pyrolysis. Finally, it is stressed that at this moment there is no enougt reason to push BC reduction into any climate change related negotiations, although BC has been included in some o so-called win-win reduction targets for the quick response to both climate and non-climate appeals.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-03)
文摘Data on aerosol optical thickness(AOT) and single scattering albedo(SSA) derived from Moderate Resolution Imaging Spectrometer(MODIS) and Ozone Monitoring Instrument(OMI) measurements,respectively,are used jointly to examine the seasonal variations of aerosols over East Asia.The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean.These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast,the small-sized aerosols represented by the fine-mode AOT,which are primarily generated over the land by human activities,do not have evident seasonalscale fluctuations.A persistent maximum of aerosol loadings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year.Most regions exhibit a general spring maximum. During the summer,however,the aerosol loadings are the most marked over north central China.This occurrence may result from anthropogenic fine particles,such as sulfate and nitrate.Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA.Over southwestern and southeastern China,if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However,more substantial aerosol loadings probably represent less-absorptive aerosols.The opposite covariation pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols.North central China is strongly affected by dust aerosols that show moderate absorption.This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.
基金supported by the National Basic Research Program of China [grant number 2017YFC0210003]the National Natural Science Foundation of China [grant number 41275165]
文摘UV radiation plays an important role in climate change and photochemical reactions,and in Ecosystem Research.In this study,the authors presented study results of China’s National Basic Research Program Study on the climatic characteristics and reconstruction method of UV radiation in China.The spatiotemporal variation of UV radiation in China has been discussed,and then an effcient modeling method has been established to obtain history UV radiation data to analyse the variation trends of UV radiation in China.Finally,the influence of aerosol,cloud,ozone,and water vapor on UV radiation has been discussed.
基金supported by the National Basic Research Program of China(973 Program,2010CB950804)
文摘In this study,a general circulation model coupled with a gas-phase module and an aerosol chemistry module was employed to investigate the impacts of anthropogenic emission sectors on aerosol direct radiative forcing at the top of atmosphere (TOA) in the present-day climate.The predictions were based on the emission inventories developed in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5).Six emission sectors-agriculture,open biomass burning,domestic activities,industry,energy generation,and transport-were considered,with a special focus on nitrate aerosol that shows large uncertainties in current models.The results show that the energy sector accounts for the largest contribution (-222 mW m-2) to global aerosol radiative forcing,with substantial negative forcing from sulfate.Inclusion of nitrate results in the transport sector yielding a global nitrate radiative forcing of-92 mW rm-2 and an internally mixed aerosol radiative forcing of-85 mW m-2,which is opposite to the positive radiative forcing predicted in the past,indicating that the transport emissions could not be a potential control target to counteract climate warming as expected before.The maximum change in nitrate burden is found to be associated with agricultural emissions,which accounts for about 75% of global ammonia gas (NH3) emissions.Agricultural emissions account for global nitrate radiative forcing of-186 mW m-2 and internally mixed aerosols direct radiative forcing of-149 mW m-2.Such agricultural radiative forcing exceeds the radiative forcing of the industrial sector and is responsible for a large portion of negative radiative forcing over the Northern Hemisphere.
基金supported by the National Basic Research Program of China (Grant No. 2013CB955801)the National Natural Science Foundation of China (Grant No. 41275047)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300)
文摘The Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction profiles at 1020 nm were used to study the distribution characteristics of stratospheric aerosols during the volcanically quiescent period of 1998-2004. The stratospheric aerosol distributions exhibited hemispheric asymmetry between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In the lower stratosphere below 20 km, the zonal averaged aerosol optical depths in the NH were higher than those of the corresponding SH; whereas at higher altitudes above 20 km, the optical depths in the SH-- except the equatorial region--were higher than those of the NH. At 0-10°N and 10-20°N, the stratospheric aerosol optical depth (SAOD) exhibited larger values in boreal winter and lower values in the spring and summer; at 0-10°S and 10-20°S, the SAOD presented small seasonal variations. At 30-40°N, the SAOD presented larger values in the boreal fall and winter and lower values in the spring and summer; while at 30-40°S, the SAOD exhibited larger values in the austral winter and early spring and lower values in the summer and fall. These characteristics can mainly be attributed to the seasonal cycle of the dynamic transport, and the effects of the buildup and breakdown of the polar vortex. At 50-60°S, the SAOD exhibited extremely high values during austral winter associated with the Antarctic polar vortex boundary; at 50-60°N, the SAOD also exhibited larger values during the boreal winter, but it was much less obvious than that of its southern counterpart.
基金the“33rd Frontier Science and Technology Forum”sponsored by the Chinese Academy of Sciences(Grant No.L12220036)the National Basic Research Program of China(Grant No.2013CB955803)the National Natural Science Foundation of China(Grant No.41205055)
文摘Scientific issues relevant to interactions between aerosols and the Asian monsoon climate were discussed and evaluated at the 33 rd "Forum of Science and Technology Frontiers" sponsored by the Department of Earth Sciences at the Chinese Academy of Sciences. Major results are summarized in this paper. The East Asian monsoon directly affects aerosol transport and provides a favorable background circulation for the occurrence and development of persistent fog-haze weather. Spatial features of aerosol transport and distribution are also influenced by the East Asian monsoon on seasonal, inter-annual, and decadal scales. High moisture levels in monsoon regions also affect aerosol optical and radiative properties. Observation analyses indicate that cloud physical properties and precipitation are significantly affected by aerosols in China with aerosols likely suppressing local light and moderate rainfall, and intensifying heavy rainfall in southeast coastal regions. However, the detailed mechanisms behind this pattern still need further exploration. The decadal variation in the East Asian monsoon strongly affects aerosol concentrations and their spatial patterns. The weakening monsoon circulation in recent decades has likely helped to increase regional aerosol concentrations. The substantial increase in Chinese air pollutants has likely decreased the temperature difference between land and sea, which favors intensification of the weakening monsoon circulation. Constructive suggestions regarding future studies on aerosols and monsoons were proposed in this forum and key uncertain issues were also discussed.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A1A3A04005520 and 2017K2A9A1A06056874)supported by the National Science Foundation (AGS-1934392)+1 种基金The Community Earth System Model project is supported primarily by the National Science Foundation (NSF)supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement (1852977)。
文摘Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth’s climate. Major emission sources shifted from the western to eastern hemisphere around the 1980 s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940–1980 and the zonal shift of aerosol forcing for 1980–2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean–atmosphere interactions, respectively.The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Ni?a-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change.
基金supported by the Major Project of National Natural Science Foundation of China (Grant No. 40890052)National Basic Research Progam of China (Grant No. 2007CB815901)+1 种基金National Natural Science Foundation of China (Grant No. 40805036)the Basic Research Fund of CAMS
文摘Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.