The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid...The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.展开更多
Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured ...Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.展开更多
The killing and injury effects of gas explosion shock wave on mouse in an open space pipeline is tested experimentally. When the methane volume fraction is 10M, the maximum explosion pressure is 0. 264 MPa and the inj...The killing and injury effects of gas explosion shock wave on mouse in an open space pipeline is tested experimentally. When the methane volume fraction is 10M, the maximum explosion pressure is 0. 264 MPa and the injury is the most serious. Specially, some designed obstacles put in the open space pipeline are conducive to producing more stronger gas explosion shock wave. Accordingly, the injury effect of methane explosion on mouse is enhanced under obstacles condition. When the methane volume fraction is 10%, the maximum explosion pressure can reach 0. 298 MPa under obstacles conditiorL It can be concluded that to reduce explosive accident impact, the obstacles in coal mine should be avoided. With the explosions increasing, the death pressure of mouse decreases.展开更多
Applications of pyrolysis-gas chromatography and pyrolysis capillary gas chromatography in explosive and propellant analysis are reviewed, including the identification of explosives and propel- lants, the investigatio...Applications of pyrolysis-gas chromatography and pyrolysis capillary gas chromatography in explosive and propellant analysis are reviewed, including the identification of explosives and propel- lants, the investigation of the thermal decomposition of nitrocellulose (NC), cyclotetramethylene tetranitramine (HMX)and cyclotrimethylene trinitramine (RDX), and the study of the wear- reducing mechanism of polyurethane additive in propellant gain.展开更多
The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the f...The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it.展开更多
Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 i...Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained.展开更多
Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of g...Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology,structural geology,coal petrology and rock tests,we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore,countermeasures should be taken in these areas to prevent gas outbursts.展开更多
To control and reduce the harm of a gas explosion, a new method is proposed for suppressing gas-explosion propagation in a tunnel by using a vacuum chamber. We studied the suppression effect on gas explosions by placi...To control and reduce the harm of a gas explosion, a new method is proposed for suppressing gas-explosion propagation in a tunnel by using a vacuum chamber. We studied the suppression effect on gas explosions by placing a vacuum chamber at dif-ferent positions along the tunnel. The results indicate that: 1) the vacuum chamber can absorb the explosion wave and explosion energy as much as possible at the beginning of the gas explosion, and; 2) when the vacuum chamber is used the closer it is to the ignition source the more significant the suppression effect. In addition, by using the vacuum chamber: 1) the flame propagation velocity decreases from ultrasonic to subsonic; 2) the flame propagation distance is remarkably shortened; 3) the maximum peak value of overpressure (pm) decreases from 0.34 to 0.17 MPa or less, and; 4) the impulse of the blast wave (I) decreases from 20 to 8 kPa·s or less.展开更多
Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that...Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of HE increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.展开更多
The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative p...The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, lran. Besides, the research also studied the significance of blast induced ground vibration and air- blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel- oped using field records. A general frequency analysis and risk evaluation revealed that: 94% of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.展开更多
In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is...In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.展开更多
Based on the systematical analysis influence factors of coal and gas outburst, the main factors and their magnitude was determined by the corresponding methods.With the research region divided into finite predicting u...Based on the systematical analysis influence factors of coal and gas outburst, the main factors and their magnitude was determined by the corresponding methods.With the research region divided into finite predicting units,the internal relation between the factors and the hazard of coal and gas outburst,that was combination model of influence factors,was ascertained through multi-factor pattern recognition method.On the basis of contrastive analysis the pattern of coal and gas outburst between prediction region and mined region,the hazard of every predication unit was determined.The mining area was then divided into coal and gas outburst dangerous area,threaten area and safe area re- spectively according to the hazard of every predication unit.Accordingly the hazard of mining area is assessed.展开更多
Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density e...Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density etc.) of bursting coal-gas flow and gas pressure in the hole, then pointed out the critical state change of coal-gas flow under different pressure conditions which had the very tremendous influence on both stability and destructiveness of the entire coal and gas outburst system. The mathematical processing and results of one-dimensional flow under the perfect condition are simple and explicit in this paper, which has the certain practical significance.展开更多
Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compre...Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.展开更多
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based co...A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.展开更多
In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient tempera...In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.展开更多
In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentra...In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentration and geometry. Flame and pressure transducers were used to track the explosion front velocity. The flame speed (Sf) showed a slight downward trend while the methane concentration varied from 10% to 3% in the experimental channel. The peak overpressure (Pmax) dropped dramatically when compared with normal conditions. As well, the values of Pmax and Sf decreased when the methane concentration dropped from 8% to 6%. The flame speed in the channel, connected to a cylinder with a length varying from 0.5 to 2 m, was greater than that in the normal channel. The peak overpressure was also higher than that under normal conditions because of a higher flame speed and stronger pressure piling up. The values of Pmax and Sf increased with an increase in cylinder length. The research results indicate that damage caused by explosions can be reduced by decreasing the gas concentration, which should be immediately detected in roadways with large cross-sections because of the possibility of greater destruction caused by more serious explosions.展开更多
The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the...The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the straight and bending pipes, the pressure wave and velocity wave are accelerated by the rising of reaction rate. As the explosion progressed, with the temperature reaching approximately 3000 K, only one pressure wave and one reaction rate wave were observed, while several velocity waves were found.The larger diameter presented the highest relative pressure as well as the largest velocity increase and subsequent decrease inside the tube. The bent pipes caused both turbulence and kinetic energy to increase, resulting in the acceleration of the reaction rate. The burning time was 7.4% shorter than the burning time observed for the straight pipe. Based on these results, designing one explosion resistance device, and in the practical engineering applications, it was to be proved to meet the security requirements fully.展开更多
Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper...Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper, and the Minimal Cut Set, the Minimal Path Set and the Importance were introduced to develop the methodology. These concepts are employed to analyze the influence each event has on the top event ? the gas explosion, so as to find out about the defects of the system and accordingly help to work out the emphasis of the precautionary work and some preventive measures as well. The results of the safety analysis are in accordance with the practical requirements; therefore the preventive measures are certain to work effectively. In brief, according to the research CD is so effective in the safety analysis and the safety assessment that it can be a qualitative and quantitative method to predict the accident as well as offer some effective measures for the investigation, the prevention and the control of the accident.展开更多
基金supported by National Natural Science Foundation of China(No.12272184).
文摘The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.
文摘Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.
文摘The killing and injury effects of gas explosion shock wave on mouse in an open space pipeline is tested experimentally. When the methane volume fraction is 10M, the maximum explosion pressure is 0. 264 MPa and the injury is the most serious. Specially, some designed obstacles put in the open space pipeline are conducive to producing more stronger gas explosion shock wave. Accordingly, the injury effect of methane explosion on mouse is enhanced under obstacles condition. When the methane volume fraction is 10%, the maximum explosion pressure can reach 0. 298 MPa under obstacles conditiorL It can be concluded that to reduce explosive accident impact, the obstacles in coal mine should be avoided. With the explosions increasing, the death pressure of mouse decreases.
文摘Applications of pyrolysis-gas chromatography and pyrolysis capillary gas chromatography in explosive and propellant analysis are reviewed, including the identification of explosives and propel- lants, the investigation of the thermal decomposition of nitrocellulose (NC), cyclotetramethylene tetranitramine (HMX)and cyclotrimethylene trinitramine (RDX), and the study of the wear- reducing mechanism of polyurethane additive in propellant gain.
文摘The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it.
文摘Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained.
文摘Gas outbursts from "three-soft" coal seams (soft roof,soft floor and soft coal) constitute a very serious prob-lem in the Ludian gliding structure area in western Henan. By means of theories and methods of gas geology,structural geology,coal petrology and rock tests,we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions. The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place. Therefore,countermeasures should be taken in these areas to prevent gas outbursts.
基金Projects 50534090 and 50674090 supported by the National Natural Science Foundation of China2006BAK03B05 by the National "Eleventh Five" Scien-tific and Technology Key Program of China+1 种基金2005CB221503 by the National Basic Research Program of China2007A001 by the Scientific Research Foundation of China University of Mining & Technology
文摘To control and reduce the harm of a gas explosion, a new method is proposed for suppressing gas-explosion propagation in a tunnel by using a vacuum chamber. We studied the suppression effect on gas explosions by placing a vacuum chamber at dif-ferent positions along the tunnel. The results indicate that: 1) the vacuum chamber can absorb the explosion wave and explosion energy as much as possible at the beginning of the gas explosion, and; 2) when the vacuum chamber is used the closer it is to the ignition source the more significant the suppression effect. In addition, by using the vacuum chamber: 1) the flame propagation velocity decreases from ultrasonic to subsonic; 2) the flame propagation distance is remarkably shortened; 3) the maximum peak value of overpressure (pm) decreases from 0.34 to 0.17 MPa or less, and; 4) the impulse of the blast wave (I) decreases from 20 to 8 kPa·s or less.
基金Projects 706029 supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China2007AA04Z332 by the National High Technology Research and Development Program of China
文摘Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of HE increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.
文摘The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, lran. Besides, the research also studied the significance of blast induced ground vibration and air- blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel- oped using field records. A general frequency analysis and risk evaluation revealed that: 94% of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.
基金Major Research and Development Project of Shanxi Province(No.201603D121012)
文摘In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.
基金the Project of China National"973"Program(2005CB221501)National Natural Science Foundation of China(50474010)Key Laboratory Science Research Project of Liaoning Education Bureau(20060372)
文摘Based on the systematical analysis influence factors of coal and gas outburst, the main factors and their magnitude was determined by the corresponding methods.With the research region divided into finite predicting units,the internal relation between the factors and the hazard of coal and gas outburst,that was combination model of influence factors,was ascertained through multi-factor pattern recognition method.On the basis of contrastive analysis the pattern of coal and gas outburst between prediction region and mined region,the hazard of every predication unit was determined.The mining area was then divided into coal and gas outburst dangerous area,threaten area and safe area re- spectively according to the hazard of every predication unit.Accordingly the hazard of mining area is assessed.
基金Supported by the Key Program of"National Basic Research Program of China (973 Program)" (2005CB221504) the Key Program of"National Natural Science Foundation of China" (50534080)
文摘Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density etc.) of bursting coal-gas flow and gas pressure in the hole, then pointed out the critical state change of coal-gas flow under different pressure conditions which had the very tremendous influence on both stability and destructiveness of the entire coal and gas outburst system. The mathematical processing and results of one-dimensional flow under the perfect condition are simple and explicit in this paper, which has the certain practical significance.
基金financially supported by the National Science and Technology Support Program of China(2012BAK13B01)
文摘Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.
基金Project(10572026) supported by the National Natural Science Foundation of China
文摘A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.
基金Supported by the National Natural Science Foundation of China(10772029) the Ph.D Programs Foundation of Ministry of Education of China(20050007029) the Independent Research Subject of State Key Laboratory of Explosion Science and Technology(ZDKT08-02)
文摘In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.
基金provided by the National Natural Science Foundation of China (No.50574093)the Key Program of the National Nature Science of China (No.50534090)+2 种基金the National Basic Research and Development Program of China (No.2005CB221506)the National Science Foundation for Young Scholars of China (No.50804048)the National Key Technology Research and Development Program (Nos.2006BAK03B04 and 2007 BAK29B01)
文摘In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentration and geometry. Flame and pressure transducers were used to track the explosion front velocity. The flame speed (Sf) showed a slight downward trend while the methane concentration varied from 10% to 3% in the experimental channel. The peak overpressure (Pmax) dropped dramatically when compared with normal conditions. As well, the values of Pmax and Sf decreased when the methane concentration dropped from 8% to 6%. The flame speed in the channel, connected to a cylinder with a length varying from 0.5 to 2 m, was greater than that in the normal channel. The peak overpressure was also higher than that under normal conditions because of a higher flame speed and stronger pressure piling up. The values of Pmax and Sf increased with an increase in cylinder length. The research results indicate that damage caused by explosions can be reduced by decreasing the gas concentration, which should be immediately detected in roadways with large cross-sections because of the possibility of greater destruction caused by more serious explosions.
基金supported by National Natural Science Foundation of China (No. 51174113)National Key Basic Research and Development Program (No. 2011CB201206)National Key Scientific Apparatus Development of Special Item (No. 2012YQ24012705)
文摘The explosion flow field in five straight pipes with different diameters and one bending pipe selected from a domestic coal mine are studied by the method of numerical simulation. And the results show that,both in the straight and bending pipes, the pressure wave and velocity wave are accelerated by the rising of reaction rate. As the explosion progressed, with the temperature reaching approximately 3000 K, only one pressure wave and one reaction rate wave were observed, while several velocity waves were found.The larger diameter presented the highest relative pressure as well as the largest velocity increase and subsequent decrease inside the tube. The bent pipes caused both turbulence and kinetic energy to increase, resulting in the acceleration of the reaction rate. The burning time was 7.4% shorter than the burning time observed for the straight pipe. Based on these results, designing one explosion resistance device, and in the practical engineering applications, it was to be proved to meet the security requirements fully.
基金Supported by the Natural Science Foundation of China (No. 59677009) the National Research Foundation for the Doctoral Program of Higher Education of China (No.99061116)
文摘Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper, and the Minimal Cut Set, the Minimal Path Set and the Importance were introduced to develop the methodology. These concepts are employed to analyze the influence each event has on the top event ? the gas explosion, so as to find out about the defects of the system and accordingly help to work out the emphasis of the precautionary work and some preventive measures as well. The results of the safety analysis are in accordance with the practical requirements; therefore the preventive measures are certain to work effectively. In brief, according to the research CD is so effective in the safety analysis and the safety assessment that it can be a qualitative and quantitative method to predict the accident as well as offer some effective measures for the investigation, the prevention and the control of the accident.