Two numerical experiments were performed by using the Community Atmosphere Model version 3 (CAM3) with different sea ice datasets to assess the con- tribution of the decline of Arctic sea ice to warming in the North...Two numerical experiments were performed by using the Community Atmosphere Model version 3 (CAM3) with different sea ice datasets to assess the con- tribution of the decline of Arctic sea ice to warming in the Northern Hemisphere. One observed sea ice cover data; experiment was driven by for the other one, the authors used the sea ice data of the 4xCO2 scenario simulated by the fourth-generation European Centre Hamburg atmos- pheric general circulation Model of Istituto Nazionale di Geofisica e Vulcanologia, Italy (1NGV ECHAM4). The comparison of the two experiments indicates that the de- cline of the Arctic sea ice leads to a dramatic wanning over the high latitudes of the Northern Hemisphere, char- acterized by a maximum warming of more than 26~C over the Arctic region. The significant warming is closely re- lated to the enhanced atmospheric heat source. A 40-60 W m-2 increase in the apparent heat source was simulated in winter due to the decline of Arctic sea ice. In contrast, no significant change was found in the atmospheric ap- parent heat source in summer. As a result, the summer temperature change induced by the decline of Arctic sea ice appears to be weak. This study suggests that accurate sea ice cover data is crucial for future climate projection of air temperature in high latitudes.展开更多
The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and C...The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860-1899 in the "historical" experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030-2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming.展开更多
The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in the...The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.展开更多
The interannual variability of global temperature and precipitation during the last millennium is analyzed using the results of ten coupled climate models participating in the Paleoclimate Modelling Intercomparison Pr...The interannual variability of global temperature and precipitation during the last millennium is analyzed using the results of ten coupled climate models participating in the Paleoclimate Modelling Intercomparison Project Phase 3. It is found that large temperature(precipitation) variability is most dominant at high latitudes(tropical monsoon regions), and the seasonal magnitudes are greater than the annual mean. Significant multi-decadal-scale changes exist throughout the whole period for the zonal mean of both temperature and precipitation variability, while their long-term trends are indistinctive. The volcanic forcings correlate well with the temperature variability at midlatitudes, indicating possible leading drivers for the interannual time scale climate change.展开更多
Based on daily maximum and minimum temperatures at 18 meteorological stations in the Qilian Mountains and Hexi Corridor between 1960 and 2013,temporal and spatial variations in extreme temperatures were analysed using...Based on daily maximum and minimum temperatures at 18 meteorological stations in the Qilian Mountains and Hexi Corridor between 1960 and 2013,temporal and spatial variations in extreme temperatures were analysed using linear trends,tenpoint moving averages and the Mann-Kendall test.The results are as follows:The trends in the majority of the extreme temperature indices were statistically significant,and the changes in the extreme temperatures were more obvious than the changes in the extreme values.The trends were different for each season,and the changes in rates and intensities in summer and autumn were larger than those in spring and winter.Unlike the cold indices,the magnitudes and trends of the changes in the warm indices were larger and more significant in the Hexi Corridor than in the Qilian Mountains.Abrupt changes were detected in the majority of the extreme temperature indices,and the extreme cold indices usually occurred earlier than the changes in the extreme warm indices.The abrupt changes in the extreme temperatures in winter were the earliest among the four seasons,indicating that these temperature changes were the most sensitive to global climate change.The timing of the abrupt changes in certain indices was consistent throughout the study area,but the changes in the cold indices in the Hexi Corridor occurred approximately four years before those in the Qilian Mountains.Similarly,the changes in the warm indices in the western Hexi Corridor preceded those of the other regions.展开更多
Seasonality changes in China under elevated atmospheric CO2 concentrations were simulated using nine global climate models, assuming a 1% per year increase in atmospheric CO2. Simulations of 20th century experiments o...Seasonality changes in China under elevated atmospheric CO2 concentrations were simulated using nine global climate models, assuming a 1% per year increase in atmospheric CO2. Simulations of 20th century experiments of season changes in China from the periods 1961-80 to 1981-2000 were also assessed using the same models. The results show that the ensemble mean simula- tion of the nine models performs better than that of an individual model simulation. Compared the mean climatology of the last 20 years in the CO2-quadrupling experiments with that in the CO2-doubling ones, the ensemble mean results show that the hottest/coldest continuous-90-day (local summer/winter) mean temperature in- creased by 3.4/4.5℃, 2.7/2.9℃, and 2.9/4.1℃ in Northeast (NE), Southwest (SW), and Southeast (SE) China, respectively, indicating a weakening seasonal amplitude (SA), but by 4.4/4.0℃ in Northwest (NW) China, indicating an enlarging SA. The local summer lengthened by 37/30/66/54 days in NW, NE, SW, and SE China, respec- tively. In some models, the winter disappeared during the CO2-quadrupling period, judging by the threshold based on the CO2-doubling period. The average of the other model simulations show that the local winter shortened by 42/36/61/44 days respectively, in the previously mentioned regions.展开更多
基金supported jointly by the National Basic Research Program of China(Grant No.2012CB956203)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(Grant No.XDA05090207)+1 种基金the Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201006023)the National Natural Science Foundation of China(General Program,Grant No.40905042)
文摘Two numerical experiments were performed by using the Community Atmosphere Model version 3 (CAM3) with different sea ice datasets to assess the con- tribution of the decline of Arctic sea ice to warming in the Northern Hemisphere. One observed sea ice cover data; experiment was driven by for the other one, the authors used the sea ice data of the 4xCO2 scenario simulated by the fourth-generation European Centre Hamburg atmos- pheric general circulation Model of Istituto Nazionale di Geofisica e Vulcanologia, Italy (1NGV ECHAM4). The comparison of the two experiments indicates that the de- cline of the Arctic sea ice leads to a dramatic wanning over the high latitudes of the Northern Hemisphere, char- acterized by a maximum warming of more than 26~C over the Arctic region. The significant warming is closely re- lated to the enhanced atmospheric heat source. A 40-60 W m-2 increase in the apparent heat source was simulated in winter due to the decline of Arctic sea ice. In contrast, no significant change was found in the atmospheric ap- parent heat source in summer. As a result, the summer temperature change induced by the decline of Arctic sea ice appears to be weak. This study suggests that accurate sea ice cover data is crucial for future climate projection of air temperature in high latitudes.
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)
文摘The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860-1899 in the "historical" experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030-2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming.
基金supported by the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes (CHINARE2015-04-04)the National Natural Science Foundation of China (Grant No. 41406027)+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406404)the international cooperation project of Indo-Pacific ocean environment variation and air-sea interaction (Grant No. GASI-03-IPOVAI-05)
文摘The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41222034 and 41421004)
文摘The interannual variability of global temperature and precipitation during the last millennium is analyzed using the results of ten coupled climate models participating in the Paleoclimate Modelling Intercomparison Project Phase 3. It is found that large temperature(precipitation) variability is most dominant at high latitudes(tropical monsoon regions), and the seasonal magnitudes are greater than the annual mean. Significant multi-decadal-scale changes exist throughout the whole period for the zonal mean of both temperature and precipitation variability, while their long-term trends are indistinctive. The volcanic forcings correlate well with the temperature variability at midlatitudes, indicating possible leading drivers for the interannual time scale climate change.
基金funded by the National Natural Science Foundation of China(No.41161017)National Natural Science Foundation of Gansu Province(No.1107RJZA248)
文摘Based on daily maximum and minimum temperatures at 18 meteorological stations in the Qilian Mountains and Hexi Corridor between 1960 and 2013,temporal and spatial variations in extreme temperatures were analysed using linear trends,tenpoint moving averages and the Mann-Kendall test.The results are as follows:The trends in the majority of the extreme temperature indices were statistically significant,and the changes in the extreme temperatures were more obvious than the changes in the extreme values.The trends were different for each season,and the changes in rates and intensities in summer and autumn were larger than those in spring and winter.Unlike the cold indices,the magnitudes and trends of the changes in the warm indices were larger and more significant in the Hexi Corridor than in the Qilian Mountains.Abrupt changes were detected in the majority of the extreme temperature indices,and the extreme cold indices usually occurred earlier than the changes in the extreme warm indices.The abrupt changes in the extreme temperatures in winter were the earliest among the four seasons,indicating that these temperature changes were the most sensitive to global climate change.The timing of the abrupt changes in certain indices was consistent throughout the study area,but the changes in the cold indices in the Hexi Corridor occurred approximately four years before those in the Qilian Mountains.Similarly,the changes in the warm indices in the western Hexi Corridor preceded those of the other regions.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421401)the National Natural Science Foundation of China (Grant No.41005039)+1 种基金Hong Kong Environment and Conservation Fund (ECF)project (Grant No. 9211008)City University of Hong Kong(Grant No. SRG7002505)
文摘Seasonality changes in China under elevated atmospheric CO2 concentrations were simulated using nine global climate models, assuming a 1% per year increase in atmospheric CO2. Simulations of 20th century experiments of season changes in China from the periods 1961-80 to 1981-2000 were also assessed using the same models. The results show that the ensemble mean simula- tion of the nine models performs better than that of an individual model simulation. Compared the mean climatology of the last 20 years in the CO2-quadrupling experiments with that in the CO2-doubling ones, the ensemble mean results show that the hottest/coldest continuous-90-day (local summer/winter) mean temperature in- creased by 3.4/4.5℃, 2.7/2.9℃, and 2.9/4.1℃ in Northeast (NE), Southwest (SW), and Southeast (SE) China, respectively, indicating a weakening seasonal amplitude (SA), but by 4.4/4.0℃ in Northwest (NW) China, indicating an enlarging SA. The local summer lengthened by 37/30/66/54 days in NW, NE, SW, and SE China, respec- tively. In some models, the winter disappeared during the CO2-quadrupling period, judging by the threshold based on the CO2-doubling period. The average of the other model simulations show that the local winter shortened by 42/36/61/44 days respectively, in the previously mentioned regions.