A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical...A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes.展开更多
Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of d...Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.展开更多
High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an...High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an impurity in the BNNTs by energy-dispersive X-ray (EDX) and Raman spectroscopies. Boron oxide vapor was generated from a mixture of B, FeO, and MgO powders heated to 1,150 ℃, and it was transported to the reaction zone by flowing ammonia. Lithium nitrate was applied to the upper side of a BN bar from a water solution. The bar was placed along a temperature gradient zone in a horizontal tubular furnace. BNNTs with average diameters of 30-50 nm were mostly observed in a temperature range of 1,280-1,320 ℃. At higher temperatures, curled polycrystalline BN fibers appeared. Above 1,320 ℃, the number of BNNTs drastically decreased, whereas the quantity and diameter of the fibers increased. The mechanism of BNNT and fiber growth is proposed and discussed.展开更多
Highly reliable and bendable dielectrics are desired in flexible or bendable electronic devices for future applications. Hexagonal boron nitride (h-BN) can be used as bendable dielectric due to its wide band gap. He...Highly reliable and bendable dielectrics are desired in flexible or bendable electronic devices for future applications. Hexagonal boron nitride (h-BN) can be used as bendable dielectric due to its wide band gap. Here, we fabricate high quality h-BN films with controllable thickness by a low pressure chemical vapor deposition method. We demonstrate a parallel-plate capacitor using h-BN film as the dielectric. The h-BN capacitors are reliable with a high breakdown field strength of -9.0 MV/cm. Tunneling current across the h-BN film is inversely exponential to the thickness of dielectric, which makes the capacitance drop significantly. The h-BN capacitor shows a best specific capacitance of 6.8 F/cm^2, which is one order of magnitude higher than the calculated value.展开更多
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation,China+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSUZC2013016)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘A series of boron-doped polycrystalline diamond films were prepared by hot filament (HF) chemical vapor deposition on Nb substrates. The effects of B/C ratio of reaction gas on film morphology, growth rate, chemical bonding states, phase composition and electrochemical properties of each deposited sample were studied by scanning electron microscopy, Raman spectra, X-ray diffraction, microhardness indentation, and electrochemical analysis. Results show that the average grain size of diamond and the growth rate decrease with increasing the B/C ratio. The diamond films exhibit excellent adhesion under Vickers microhardness testing (9.8 N load). The sample with 2% B/C ratio has a wider potential window and a lower background current as well as a faster redox reaction rate in H2SO4 solution and KFe(CN)6 redox system compared with other doping level electrodes.
基金Project(51375011)supported by the National Natural Science Foundation of ChinaProject(15cxy49)supported by the Shanghai Municipal Education Commission,ChinaProject(16PJ025)supported by the Shanghai Pujiang Program,China
文摘Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.
文摘High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an impurity in the BNNTs by energy-dispersive X-ray (EDX) and Raman spectroscopies. Boron oxide vapor was generated from a mixture of B, FeO, and MgO powders heated to 1,150 ℃, and it was transported to the reaction zone by flowing ammonia. Lithium nitrate was applied to the upper side of a BN bar from a water solution. The bar was placed along a temperature gradient zone in a horizontal tubular furnace. BNNTs with average diameters of 30-50 nm were mostly observed in a temperature range of 1,280-1,320 ℃. At higher temperatures, curled polycrystalline BN fibers appeared. Above 1,320 ℃, the number of BNNTs drastically decreased, whereas the quantity and diameter of the fibers increased. The mechanism of BNNT and fiber growth is proposed and discussed.
基金This work was supported by the National Natural Science Foundation of China (No. 51172122), the Foundation for the Author of National Excellent Doctoral Dissertation (No. 2007B37) and the Program for New Century Excellent Talents in University, the Tsinghua University Initiative Scientific Research Pro-gram (No. 20111080939), and the China Postdoctoral Science Foundation (No. 2011M500310). We thank Prof. Yonggang Zhao and Dr. Xingli Jiang for their help in testing the capacitors.
文摘Highly reliable and bendable dielectrics are desired in flexible or bendable electronic devices for future applications. Hexagonal boron nitride (h-BN) can be used as bendable dielectric due to its wide band gap. Here, we fabricate high quality h-BN films with controllable thickness by a low pressure chemical vapor deposition method. We demonstrate a parallel-plate capacitor using h-BN film as the dielectric. The h-BN capacitors are reliable with a high breakdown field strength of -9.0 MV/cm. Tunneling current across the h-BN film is inversely exponential to the thickness of dielectric, which makes the capacitance drop significantly. The h-BN capacitor shows a best specific capacitance of 6.8 F/cm^2, which is one order of magnitude higher than the calculated value.