The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl...The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.展开更多
Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 ...Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.展开更多
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr...Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.展开更多
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m...The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region.展开更多
China witnessed a warm and dry climate in 2023.The annual surface air temperature reached a new high of 10.71℃,with the hottest autumn and the second hottest summer since 1961.Meanwhile,the annual precipitation was t...China witnessed a warm and dry climate in 2023.The annual surface air temperature reached a new high of 10.71℃,with the hottest autumn and the second hottest summer since 1961.Meanwhile,the annual precipitation was the second lowest since 2012,at 615.0 mm.Precipitation was less than normal from winter to summer,but more in autumn.Consistent with the annual condition,precipitation in the flood season from May to September was also the second lowest since 2012,which was 4.3%less than normal,with the anomalies in the central and eastern parts of China being higher in central areas and lower in the north and south.On the contrary,the West China Autumn Rain brought much more rainfall than normal,with an earlier start and later end.Although there was less annual precipitation in 2023,China suffered seriously from heavy precipitation events and floods.In particular,from the end of July to the beginning of August,a rare,extremely strong rainstorm caused by Typhoon Dussuri hit Beijing,Tianjin,and Hebei,causing an abrupt alteration from drought to flood conditions in North China.By contrast,Southwest China experienced continuous drought from the previous autumn to current spring.In early summer,North China and the Huanghuai region experienced the strongest high-temperature process since 1961.Nevertheless,there were more cold-air processes than normal impacting China,with the most severe of the year occurring in mid-January.Unexpectedly,in spring,there were more sand and dust occurrences in northern China.展开更多
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program[grant numbers 2019QZKK0105 and 2019QZKK0103]the National Natural Science Foundation of China[grant number 41975009].
文摘The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.
基金supported by the National Key Research and Development Program of China[grant number 2023YFC3206001]the Three Gorges Project Comprehensive Monitoring Program for Operational Safety[grant number SK2023019]which funded by the Ministry of Water Resources of China.
文摘Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 42175037].
文摘Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.
基金supported by the National Natural Science Foundation of China[grant number 42105064]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the special fund of the Yunnan University“double first-class”construction.
文摘The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region.
基金supported by the National Key Research and Development Program of China[grant numbers 2023YFC3206001 and 2018YFC150706]the China Meteorological Administration Innovation Development Program[grant number CXFZ2024J071]the National Natural Science Foundation of China[grant numbers U2342209 and 42175078].
文摘China witnessed a warm and dry climate in 2023.The annual surface air temperature reached a new high of 10.71℃,with the hottest autumn and the second hottest summer since 1961.Meanwhile,the annual precipitation was the second lowest since 2012,at 615.0 mm.Precipitation was less than normal from winter to summer,but more in autumn.Consistent with the annual condition,precipitation in the flood season from May to September was also the second lowest since 2012,which was 4.3%less than normal,with the anomalies in the central and eastern parts of China being higher in central areas and lower in the north and south.On the contrary,the West China Autumn Rain brought much more rainfall than normal,with an earlier start and later end.Although there was less annual precipitation in 2023,China suffered seriously from heavy precipitation events and floods.In particular,from the end of July to the beginning of August,a rare,extremely strong rainstorm caused by Typhoon Dussuri hit Beijing,Tianjin,and Hebei,causing an abrupt alteration from drought to flood conditions in North China.By contrast,Southwest China experienced continuous drought from the previous autumn to current spring.In early summer,North China and the Huanghuai region experienced the strongest high-temperature process since 1961.Nevertheless,there were more cold-air processes than normal impacting China,with the most severe of the year occurring in mid-January.Unexpectedly,in spring,there were more sand and dust occurrences in northern China.