The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experimen...The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experiments are done. The experiment results agree with those of theory analyses. It can be shown that the relations are correct and the conclusion of theory analyses is reasonable.展开更多
As an environmentally harmless and feasible alternate refrigerant, CO 2 has attracted worldwide attention, especially in the area of automobile air conditioning (AAC). The thermal property of CO 2 and its trans cr...As an environmentally harmless and feasible alternate refrigerant, CO 2 has attracted worldwide attention, especially in the area of automobile air conditioning (AAC). The thermal property of CO 2 and its trans critical refrigeration cycle is very different from that of the traditional CFC or HCFC system. The detailed process of CO 2 system thermal cycle design and optimization is described in this paper. System prototype and performance test bench were developed to analyze the performance of the CO 2 AAC system.展开更多
Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation i...Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation in the Polish Carpathians. This study consists of climatological analyses for the historical period 1851-2010 and future projections for 2021-2100. The results confirm that there has been significant warming of the area and that this warming has been particularly pronounced over the last few decades and will continue in the oncoming years.Climate change is most evident in the foothills;however, these are the highest summits which have experienced the most intensive increases in temperature during the recent period. Precipitation does not demonstrate any substantial trend and has high year-to-year variability. The distribution of the annual temperature contour lines modelled for selected periods provides evidence of the upward shift of vertical climate zones in the Polish Carpathians,which reach approximately 350 meters, on average,what indicates further ecological consequences as ecosystems expand or become extinct and when there are changes in the hydrological cycle.展开更多
Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed...Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
To protect mining areas from electrical fire, it is very important to install electrical nre momtormg system to ensure safety in development of mineral resources and for buildings. In this paper, design for electrical...To protect mining areas from electrical fire, it is very important to install electrical nre momtormg system to ensure safety in development of mineral resources and for buildings. In this paper, design for electrical fire monitoring and detection system with optional sensor modules has been proposed. In addition, necessity and suitability of electrical fire monitoring and detection system with optional sensor modules in mining areas have been reviewed. The designed electrical fire monitoring and detection system suit- able for work environment of mining industry is composed by host-computer monitoring software and slave-computer detectors. Monitoring detectors are manufactured by using embedded technology. Exter- nal shells deployed have superior enclosure performances and explosion-proof properties. It is easy to install and maintain the system. In general, the system has reached, or even exceeded standards specified in national standards for performances and appearances of such devices. Test results show application of electrical fire monitoring and detection system can effectively enhance monitoring intensity over the mining areas and provide reliable guarantee to ensure orderly development of mineral resources and to protect physical and property safety of citizens in these areas.展开更多
This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, el...This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, electric fan, coffee maker, and radio. The paper presents the design method which is a short and correct method for the PV Hybrid system design. The result of the proposed design method is finally simulated by Homer software to optimize and prove the result. From the simulation, the output shows that the proposed method is proper for using to design the sizing of PV hybrid system. After the design, a PV hybrid system is constructed accordingly to the system design. A PV hybrid prototype is constructed as a small house which is specially constructed for demonstration of the proposed system. The PV hybrid system therefore has the size of PV 1.8 kWp, battery 20 kWh, and diesel generator 3 kW. After a long implementation of the system, the results of monitored data show that the designed PV hybrid system can deliver the power to the house continually 24 hours as it is originally designed. This can ensure that the proposed method of PV hybrid system design is correct and can be used for design the PV hybrid system for electrical utility in the remote area where has no an electric grid.展开更多
Controlling the biogas fermentation process is the key for maintaining stable operation of biogas system and increasing gas yield. Aiming at features of biogas fermentation process and difficulties of control, a pract...Controlling the biogas fermentation process is the key for maintaining stable operation of biogas system and increasing gas yield. Aiming at features of biogas fermentation process and difficulties of control, a practical control scheme is proposed combining the abundant experience of biogas experts. And it discussed the structural design and hardware configuration of the expert control system, established the database and role base, and designed the control strategy of production system inference. The design scheme with ZigBee and PDA technology as core is employed so as to solve problems of environmental factor detection and data transfer management. The test result shows that the deviation of temperature is controlled within ± 0.9℃, the deviation of pH is controlled within ±0.3, the deviation of oxidation-reduction potential is controlled within ±30mV, the deviation of gas production is controlled within ± 9mL and that of methane concentration is controlled within ±4.5%. This system is easily expandable and applicable to biogas engineering at various scales.展开更多
In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fue...In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using a Lyapunov's stability analysis strategy.展开更多
The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient larg...The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.展开更多
文摘The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experiments are done. The experiment results agree with those of theory analyses. It can be shown that the relations are correct and the conclusion of theory analyses is reasonable.
文摘As an environmentally harmless and feasible alternate refrigerant, CO 2 has attracted worldwide attention, especially in the area of automobile air conditioning (AAC). The thermal property of CO 2 and its trans critical refrigeration cycle is very different from that of the traditional CFC or HCFC system. The detailed process of CO 2 system thermal cycle design and optimization is described in this paper. System prototype and performance test bench were developed to analyze the performance of the CO 2 AAC system.
基金the FORECOM project (Forest cover changes in mountainous regions – drivers, trajectories and implications, PSRP 008/2010)supported by a grant from Switzerland through the Swiss contribution to the enlarged European Union
文摘Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation in the Polish Carpathians. This study consists of climatological analyses for the historical period 1851-2010 and future projections for 2021-2100. The results confirm that there has been significant warming of the area and that this warming has been particularly pronounced over the last few decades and will continue in the oncoming years.Climate change is most evident in the foothills;however, these are the highest summits which have experienced the most intensive increases in temperature during the recent period. Precipitation does not demonstrate any substantial trend and has high year-to-year variability. The distribution of the annual temperature contour lines modelled for selected periods provides evidence of the upward shift of vertical climate zones in the Polish Carpathians,which reach approximately 350 meters, on average,what indicates further ecological consequences as ecosystems expand or become extinct and when there are changes in the hydrological cycle.
基金Supported by the National Key R&D Program of China(2017YFB0603702)the Natural Science Foundation of Zhejiang Province(Y15E060014)+1 种基金the National Natural Science Foundation of China(51636007)Shanghai Young Teachers Development Program(10-16-301-801)
文摘Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
基金the Science & Technology Research and Development Project of Langfang Municipal City for the Year 2013 (No.2013011048)Baoding GEEHO Electric Technology Development Co.,Ltd.for financial support and help in data acquisition and statistics during preparation of this paper
文摘To protect mining areas from electrical fire, it is very important to install electrical nre momtormg system to ensure safety in development of mineral resources and for buildings. In this paper, design for electrical fire monitoring and detection system with optional sensor modules has been proposed. In addition, necessity and suitability of electrical fire monitoring and detection system with optional sensor modules in mining areas have been reviewed. The designed electrical fire monitoring and detection system suit- able for work environment of mining industry is composed by host-computer monitoring software and slave-computer detectors. Monitoring detectors are manufactured by using embedded technology. Exter- nal shells deployed have superior enclosure performances and explosion-proof properties. It is easy to install and maintain the system. In general, the system has reached, or even exceeded standards specified in national standards for performances and appearances of such devices. Test results show application of electrical fire monitoring and detection system can effectively enhance monitoring intensity over the mining areas and provide reliable guarantee to ensure orderly development of mineral resources and to protect physical and property safety of citizens in these areas.
文摘This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, electric fan, coffee maker, and radio. The paper presents the design method which is a short and correct method for the PV Hybrid system design. The result of the proposed design method is finally simulated by Homer software to optimize and prove the result. From the simulation, the output shows that the proposed method is proper for using to design the sizing of PV hybrid system. After the design, a PV hybrid system is constructed accordingly to the system design. A PV hybrid prototype is constructed as a small house which is specially constructed for demonstration of the proposed system. The PV hybrid system therefore has the size of PV 1.8 kWp, battery 20 kWh, and diesel generator 3 kW. After a long implementation of the system, the results of monitored data show that the designed PV hybrid system can deliver the power to the house continually 24 hours as it is originally designed. This can ensure that the proposed method of PV hybrid system design is correct and can be used for design the PV hybrid system for electrical utility in the remote area where has no an electric grid.
文摘Controlling the biogas fermentation process is the key for maintaining stable operation of biogas system and increasing gas yield. Aiming at features of biogas fermentation process and difficulties of control, a practical control scheme is proposed combining the abundant experience of biogas experts. And it discussed the structural design and hardware configuration of the expert control system, established the database and role base, and designed the control strategy of production system inference. The design scheme with ZigBee and PDA technology as core is employed so as to solve problems of environmental factor detection and data transfer management. The test result shows that the deviation of temperature is controlled within ± 0.9℃, the deviation of pH is controlled within ±0.3, the deviation of oxidation-reduction potential is controlled within ±30mV, the deviation of gas production is controlled within ± 9mL and that of methane concentration is controlled within ±4.5%. This system is easily expandable and applicable to biogas engineering at various scales.
文摘In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using a Lyapunov's stability analysis strategy.
基金Science and Technology Fund of SGCC(Grant No.KJ-2012-627)The National Natural Science Foundation of China(Grant No.51321005)
文摘The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.