FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly impr...FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.展开更多
文摘探空业务可获取30 km高度范围内的温湿压风等气象要素。气象科学研究和高空大气实验中使用的探空仪及探空系统有多种,其数据格式也各不相同,为便于使用和分析数据,需要一套通用的处理显示软件。系统采用可视化编程工具Visual C++进行软件系统的设计,实现多种探空仪数据的统一格式转换,它基于MFC单文档视图结构,利用绘图函数实现探空气象要素的垂直廓线显示,并建立了基于SQL Server 2008的数据库,通过编程实现了对探空数据的存储和查询等功能。
文摘FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.