大型水利枢纽,尤其采用挑流消能工的高坝工程,在泄洪时产生的雾化降雨强度远超自然降雨,由此对枢纽正常运行、泄洪区交通安全、周围环境等均构成危害。对金沙江下游溪洛渡水电站大坝深孔泄洪时雾化影响范围、降雨强度分布、气象特性等...大型水利枢纽,尤其采用挑流消能工的高坝工程,在泄洪时产生的雾化降雨强度远超自然降雨,由此对枢纽正常运行、泄洪区交通安全、周围环境等均构成危害。对金沙江下游溪洛渡水电站大坝深孔泄洪时雾化影响范围、降雨强度分布、气象特性等进行了重点观测研究。结果表明:溪洛渡水电站深孔泄洪雾化降雨强度分布呈现局部降雨强度大、降雨强度沿纵向及岸坡方向递减速度快的特点;观测工况下最大降雨强度达4 704 mm/h;观测时段自然风速未超过3.5 m/s条件下,泄洪区最大风速达16.3 m/s;自然气压为0 k Pa、空气湿度为85%左右时,最大气压约为96 k Pa,空气湿度为100%。观测成果一方面可对溪洛渡水电站岸坡防护设计进行验证,并为以后类似工程的岸坡防护设计提供参考,另一方面可为其他研究手段的完善提供丰富详实数据,具有重要价值。展开更多
文摘大型水利枢纽,尤其采用挑流消能工的高坝工程,在泄洪时产生的雾化降雨强度远超自然降雨,由此对枢纽正常运行、泄洪区交通安全、周围环境等均构成危害。对金沙江下游溪洛渡水电站大坝深孔泄洪时雾化影响范围、降雨强度分布、气象特性等进行了重点观测研究。结果表明:溪洛渡水电站深孔泄洪雾化降雨强度分布呈现局部降雨强度大、降雨强度沿纵向及岸坡方向递减速度快的特点;观测工况下最大降雨强度达4 704 mm/h;观测时段自然风速未超过3.5 m/s条件下,泄洪区最大风速达16.3 m/s;自然气压为0 k Pa、空气湿度为85%左右时,最大气压约为96 k Pa,空气湿度为100%。观测成果一方面可对溪洛渡水电站岸坡防护设计进行验证,并为以后类似工程的岸坡防护设计提供参考,另一方面可为其他研究手段的完善提供丰富详实数据,具有重要价值。