The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experiment...The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experimental results show that, by using gasoline and diesel blended fuels, the required NVO interval for suitable HCCI combustion under a given engine speed and a moderate compression ratio condition could be reduced, and the HCCI combustion region was extended remarkably without substantial increase in NOx emissions under a given inlet and exhaust valve timing due to the improvement of charge ignitability. In addition, the possible scale of NVO was extended. A substantial increase in the lean limit of excess air ratio and the upper limit of load range can be achieved because of higher volumetric efficiency, resulting from the decrease in the required NVO and the presence of less residual gases in cylinder.展开更多
A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived f...A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived for 800 kW, were recently re-tuned, from a functional point of view and on the base of a parallel theoretical analysis, by decreasing to about 400 kW the former nominal power level. This provision, jointly with the basic design choice of adopting a long and amply dimensioned inlet-biomass thermal pretreatment section, turned out quite effective in achieving high gasification temperatures and a low-tar content in the produced gas at fuel-to-air ratios well below the usually imposed ones, to the advantage of the heat value of the product-gas. The paper discusses the numerical analysis results which helped to properly re-adjust the operational parameters of the gasifier and then presents the experimental performance data of the overall power plant including biomass consumption, gasification temperatures, gas production, composition and pollutants content, cold-gas conversion efficiency and global electric efficiency. Special care is devoted to investigating the issue of a significant production of carbon-containing particulate matter in the product gas, which turns out made up of char and fixed carbon much more than of tar species.展开更多
Pingxiang Mining Area in Jiangxi Province is one of the major coal-producing areas and is prone to serious coal and gas outburst, therefore, it is of significance to research on gas geological features and its control...Pingxiang Mining Area in Jiangxi Province is one of the major coal-producing areas and is prone to serious coal and gas outburst, therefore, it is of significance to research on gas geological features and its controlling factors. Based on the analysis of gas data collected from geological exploration and coal mining, the research reveals that the features of gas geology vary significantly between west part and east part of Pingxiang Mining Area, and it is characterized by high gas mines with se- rious coal and gas outburst in the west part and low gas mines with no coal and gas outburst in the east part. The main controlling factors to gas geology are discussed, and the great difference of gas geology between west part and east part is the result of comprehensive effect by geological factors. Concerning the gas generation, the coal rank in the west part is higher than that in the east part, which is favorable to generate more gas in the west part than in the east part. Concerning the gas preservation, the structures are characterized by gliding nappe in the west part and by tectonic window in the east part, the surrounding rocks are characterized by poor permeability in the west part and comparatively good permeability in the east part, and the characteristics of coal rank and coal body structure are favorable to gas preservation in the west part and favorable to gas emission in the east part.展开更多
Ignition delay times of multi-component biomass synthesis gas (bio-syngas) diluted in argon were measured in a shock tube at elevated pressure (5, 10and 15 bar, 1 bar = 105 Pa), wide temperature ranges (1,100-1,7...Ignition delay times of multi-component biomass synthesis gas (bio-syngas) diluted in argon were measured in a shock tube at elevated pressure (5, 10and 15 bar, 1 bar = 105 Pa), wide temperature ranges (1,100-1,700 K) and various equivalence ratios (0.5, 1.0, 2.0). Additionally, the effects of the variations of main constituents (H2:CO = 0.125-8) on ignition delays were investigated. The experimental results indicated that the ignition delay decreases as the pressure increases above certain temperature (around 1,200 K) and vice versa. The ignition delays were also found to rise as CO concentration increases, which is in good agreement with the literature. In addition, the ignition delays of bio-syngas were found increasing as the equivalence ratio rises. This behavior was primarily discussed in present work. Experimental results were also compared with numerical predictions of multiple chemical kinetic mechanisms and Li's mechanism was found having the best accuracy. The logarithmic ignition delays were found nonlinearly decrease with the H2 concentration under various conditions, and the effects of temperature, equivalence ratio and H2 concentration on the ignition delays are all remarkable. However, the effect of pressure is rela- tively smaller under current conditions. Sensitivity analysis and reaction pathway analysis of methane showed that R1 (H +O2= O -9 OH) is the most sensitive reaction promot- ing ignition and R13 (H +O2 (+M) = HO2 (+M)), R53(CH3+H (+M)= CH4 (+M)), R54 (CH4+H= CH3 + H2) as well as R56 (CH4 + OH = CH3 + H2O) are key reactions prohibiting ignition under current experimental conditions. Among them, R53 (CH3 + H (+M) = CH4 (+M)), R54 (CH4 + H = CH3 + H2) have the largest posi- tive sensitivities and the high contribution rate in rich mixture. The rate of production (ROP) of OH of R1 showed that OH ROP of R1 decreases sharply as the mixture turns rich. Therefore, the ignition delays become longer as the equiva- lence ratio increases.展开更多
基金Supported by the Engineering and Physical Sciences Research Council of the UK(No58338/01)
文摘The negative valve overlap (NVO) strategy of HCCI operation was experimentally investigated on a gasoline HCCI engine operated with variable valve timing in association with the addition of diesel fuel. The experimental results show that, by using gasoline and diesel blended fuels, the required NVO interval for suitable HCCI combustion under a given engine speed and a moderate compression ratio condition could be reduced, and the HCCI combustion region was extended remarkably without substantial increase in NOx emissions under a given inlet and exhaust valve timing due to the improvement of charge ignitability. In addition, the possible scale of NVO was extended. A substantial increase in the lean limit of excess air ratio and the upper limit of load range can be achieved because of higher volumetric efficiency, resulting from the decrease in the required NVO and the presence of less residual gases in cylinder.
文摘A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived for 800 kW, were recently re-tuned, from a functional point of view and on the base of a parallel theoretical analysis, by decreasing to about 400 kW the former nominal power level. This provision, jointly with the basic design choice of adopting a long and amply dimensioned inlet-biomass thermal pretreatment section, turned out quite effective in achieving high gasification temperatures and a low-tar content in the produced gas at fuel-to-air ratios well below the usually imposed ones, to the advantage of the heat value of the product-gas. The paper discusses the numerical analysis results which helped to properly re-adjust the operational parameters of the gasifier and then presents the experimental performance data of the overall power plant including biomass consumption, gasification temperatures, gas production, composition and pollutants content, cold-gas conversion efficiency and global electric efficiency. Special care is devoted to investigating the issue of a significant production of carbon-containing particulate matter in the product gas, which turns out made up of char and fixed carbon much more than of tar species.
基金Supported by the National Natural Science Foundation of China (41172138) the Special Fund Project of Jiangxi Energy Bureau (20100730) Acknowledgments The authors wish to thank Professor Tang Xiuyi from Anhui University of Science and Technology for his constructive advice. The authors also express their gratitude to the technical personnel from Jiangxi Exploration Institute of Coalfield Geology, Jiangxi Coal Group Corporation, for their kind help.
文摘Pingxiang Mining Area in Jiangxi Province is one of the major coal-producing areas and is prone to serious coal and gas outburst, therefore, it is of significance to research on gas geological features and its controlling factors. Based on the analysis of gas data collected from geological exploration and coal mining, the research reveals that the features of gas geology vary significantly between west part and east part of Pingxiang Mining Area, and it is characterized by high gas mines with se- rious coal and gas outburst in the west part and low gas mines with no coal and gas outburst in the east part. The main controlling factors to gas geology are discussed, and the great difference of gas geology between west part and east part is the result of comprehensive effect by geological factors. Concerning the gas generation, the coal rank in the west part is higher than that in the east part, which is favorable to generate more gas in the west part than in the east part. Concerning the gas preservation, the structures are characterized by gliding nappe in the west part and by tectonic window in the east part, the surrounding rocks are characterized by poor permeability in the west part and comparatively good permeability in the east part, and the characteristics of coal rank and coal body structure are favorable to gas preservation in the west part and favorable to gas emission in the east part.
基金supported by the Key Fundamental Research Projects of Science and Technology Commission of Shanghai(14JC1403000)
文摘Ignition delay times of multi-component biomass synthesis gas (bio-syngas) diluted in argon were measured in a shock tube at elevated pressure (5, 10and 15 bar, 1 bar = 105 Pa), wide temperature ranges (1,100-1,700 K) and various equivalence ratios (0.5, 1.0, 2.0). Additionally, the effects of the variations of main constituents (H2:CO = 0.125-8) on ignition delays were investigated. The experimental results indicated that the ignition delay decreases as the pressure increases above certain temperature (around 1,200 K) and vice versa. The ignition delays were also found to rise as CO concentration increases, which is in good agreement with the literature. In addition, the ignition delays of bio-syngas were found increasing as the equivalence ratio rises. This behavior was primarily discussed in present work. Experimental results were also compared with numerical predictions of multiple chemical kinetic mechanisms and Li's mechanism was found having the best accuracy. The logarithmic ignition delays were found nonlinearly decrease with the H2 concentration under various conditions, and the effects of temperature, equivalence ratio and H2 concentration on the ignition delays are all remarkable. However, the effect of pressure is rela- tively smaller under current conditions. Sensitivity analysis and reaction pathway analysis of methane showed that R1 (H +O2= O -9 OH) is the most sensitive reaction promot- ing ignition and R13 (H +O2 (+M) = HO2 (+M)), R53(CH3+H (+M)= CH4 (+M)), R54 (CH4+H= CH3 + H2) as well as R56 (CH4 + OH = CH3 + H2O) are key reactions prohibiting ignition under current experimental conditions. Among them, R53 (CH3 + H (+M) = CH4 (+M)), R54 (CH4 + H = CH3 + H2) have the largest posi- tive sensitivities and the high contribution rate in rich mixture. The rate of production (ROP) of OH of R1 showed that OH ROP of R1 decreases sharply as the mixture turns rich. Therefore, the ignition delays become longer as the equiva- lence ratio increases.