期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
气轨实验的误差剖析
1
作者 乔卫平 鲁鹤高 《实验室研究与探索》 CAS 1993年第3期79-81,共3页
气垫导轨是一种低摩擦实验装置,它为改善力学实验提供了很好的条件。为了进一步提高测量精度,以开拓更多的实验内容,近些年来已有一些文章对其技术性能及应用进行了研究,本文仅就实验误差问题提出我们的看法与解决措施。 1 气体粘滞力... 气垫导轨是一种低摩擦实验装置,它为改善力学实验提供了很好的条件。为了进一步提高测量精度,以开拓更多的实验内容,近些年来已有一些文章对其技术性能及应用进行了研究,本文仅就实验误差问题提出我们的看法与解决措施。 1 气体粘滞力对实验的影响 在评价影响实验精度的诸因素中,人们往往提及滑块的运度阻力,即滑块与导轨间空气层的粘滞阻力对提高实验精度阻碍最大,并普遍认定粘滞阻力为: 展开更多
关键词 气轨实验 误差 力学实验
下载PDF
气轨实验的实验误差剖析
2
作者 郑发农 《物理通报》 1999年第12期29-30,共2页
1 绪论气轨实验是物理实验中的低摩擦实验装置,为了进一步提高实验的测量精度,多年来我们对其技术性能、误差及应用进行了较为详细的探讨与研究。本文仅就实验误差方面提出拙见,并分析在克服实验误差方面所存在的问题、解决措施和结果。
关键词 气轨实验 实验误差 物理教学 加速度
下载PDF
用气轨实验系统与Spss标定重力加速度 被引量:1
3
作者 杨红明 王新春 +1 位作者 王昆林 司民真 《教育教学论坛》 2013年第31期176-177,205,共3页
使气垫导轨处于水平方向的平衡状态下,通过设定滑行器所受外力,调整系统质量,用智能机使系统精准测出滑行器在水平气轨表面运动的加速度,用物理天平称量出系统质量。由测量原理、不确定度分析,引入Spss软件的曲线估计功能分析测量数据,... 使气垫导轨处于水平方向的平衡状态下,通过设定滑行器所受外力,调整系统质量,用智能机使系统精准测出滑行器在水平气轨表面运动的加速度,用物理天平称量出系统质量。由测量原理、不确定度分析,引入Spss软件的曲线估计功能分析测量数据,得到系统质量与质量加速度综合量的定标曲线,并验证得系统质量与质量-加速度综合量存在线性关系,由此标定出重力加速度,并用置信概率为95%的不确定度对测量数据及其实验结果进行合理的分析和评价,能得到更加合理的实验结果。 展开更多
关键词 气轨实验系统 牛顿第二定律 质量-加速度综合量 SPSS 标定
下载PDF
用多媒体分析气轨实验中光电计时的系统误差 被引量:1
4
作者 董刚 《物理实验》 1999年第3期17-19,共3页
讨论了用多媒体分析气轨实验中光电计时的系统误差的方法, 以及如何将实验过程中很难观察理解的物理过程, 通过计算机形象直观地展示出来, 实现教学手段现代化.
关键词 多媒体 光电计时 系统误差 气轨实验 垫导
下载PDF
气垫导轨实验中导轨弯曲的系统误差分析 被引量:2
5
作者 刘方 陈刚 《长江大学学报(自然科学版)》 CAS 2004年第1期57-58,共2页
 研究了气轨实验中系统误差的另一个重要来源———导轨弯曲对滑块运动的影响,给出了定量的计算,提出了避免减少导轨弯曲所引起的系统误差的方法.
关键词 系统误差分析 垫导实验 弯曲 滑块运动 气轨实验
下载PDF
Orbit determination for Chang'E-2 lunar probe and evaluation of lunar gravity models 被引量:31
6
作者 Li PeiJia Hu XiaoGong +5 位作者 Huang Yong Wang GuangLi Jiang DongRong Zhang XiuZhong Cao JianFeng Xin Nan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第3期514-522,共9页
The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang... The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the tracking data of CE-2 provided evaluations of different lunar gravity models through POD. It is found that for the 100 km x 100 km lunar orbit, with a degree and order expansion up to 165, JPL's gravity model LP165P did not show noticeable improvement over Japan's SGM series models (100x100), but for the 15 kmxl00 km lunar orbit, a higher de- gree-order model can significantly improve the orbit accuracy. 展开更多
关键词 Chang'E-2 VLBI orbit determination lunar gravity field
原文传递
Design and optimization of a trajectory for Moon departure Near Earth Asteroid exploration 被引量:7
7
作者 CHEN Yang BAOYIN HeXi LI JunFeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第4期748-755,共8页
The lunar probe often has some remaining fuel on completing the predefined Moon exploration mission and may carry out some additional tasks from the Moon orbit using the fuel.The possibility for the lunar probe to esc... The lunar probe often has some remaining fuel on completing the predefined Moon exploration mission and may carry out some additional tasks from the Moon orbit using the fuel.The possibility for the lunar probe to escape from the Moon and the Earth is analyzed.Design and optimization of the trajectory from the Moon orbit to the Near Earth Asteroids (NEAs) using the spacecraft's residual fuel is studied.At first,the semi-major axis,inclinations and the phase relations with the Earth of all the numbered NEAs are investigated to preliminarily select the possible targets.Based on the Sun-centered two-body problem,the launch window and the asteroid candidates are determined by calculating the minimum delta-v for two-impulse rendezvous mission and one-impulse flyby mission,respectively.For a precise designed trajectory,a full ephemeris dynamical model,which includes gravities of the Sun,the planets and the Moon,is adopted by reading the JPL ephemeris.The departure time,arrival time,burning time duration and thrust angles are set as variables to be designed and optimized.The optimization problem is solved via the Particle Swarm Optimization (PSO) algorithm.Moreover,two feasible NEA flyby missions are presented. 展开更多
关键词 trajectory design full ephemeris model Near Earth Asteroid exploration Particle Swarm Optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部