The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical mode...The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.展开更多
The concentration of absorbable particulate matter less than 10 μm termed as PM10 is the most important urban air pollution index for air quality monitoring. This paper presents a space based PM10 monitoring algorith...The concentration of absorbable particulate matter less than 10 μm termed as PM10 is the most important urban air pollution index for air quality monitoring. This paper presents a space based PM10 monitoring algorithm based on QUAC (QUick atmosphere correction) for optical remote sensing data and SVR (support vector regression). PM 10 concentration measurements from nine ground based stations in Hangzhou, China and the MODIS (moderate-resolution imaging spectroradiometer) images were analyzed. Experimental result indicates that the correlation between CD (correction differences) with actual measured data is better than correlation between AOD (aerosol optical depth) with measured data. In addition, the fitting performance of the SVR model established with CD and measured data is better than traditional regression models.展开更多
Using air pollution detecting equipments ITX, ATX620 and IBRID-MX6 Multi gas monitors a pioneer research was carried out to assess the levels of the exhausted gas emission in double-floored car parks of the Holy Proph...Using air pollution detecting equipments ITX, ATX620 and IBRID-MX6 Multi gas monitors a pioneer research was carried out to assess the levels of the exhausted gas emission in double-floored car parks of the Holy Prophet Mosque in Al-Madinah A l-Munawarah from early 12:00 to 14:00 of Friday and from 19:00 to 22:30 at holy month, Ramadan. The percentage of both carbon monoxide (CO) and nitrogen dioxide (NO2) had significantly increased (p 〈 0.05-0.005). The peak levels of these air pollutants were between 13:15-13:20 during Fridays. The increase in the emission of these exhausted gases was concomitant with the significant decrease (p 〈 0.05) in oxygen (02) levels but the latter recovered its levels after 13:20 hours. The arithmetic total mean density of vehicle per minute (vpm) at Salam Road, the busiest road of Al-Madinah, during hours (07:00-09:00), (13:00-15:00) and (17:00-19:00) of both Friday and Saturdays respectively were (8/45, 16/40 and 36/43). The increase in air pollution has been attributed to a dramatic increase in number of public cars use the car parks during these times, the consequent congestion at entries, the excess or/and poor consumption of fuels being utilized and the inadequate ventilation.展开更多
Suspended particulate matter (SPM) levels in ambient air were monitored at Mandi Gobindgarh, an industrial town of Punjab, India located on the National Highway-1 during November 2001 to March 2002 covering spring a...Suspended particulate matter (SPM) levels in ambient air were monitored at Mandi Gobindgarh, an industrial town of Punjab, India located on the National Highway-1 during November 2001 to March 2002 covering spring and winter seasons to check the variation of SPM and its constituents in the town. The maximum levels of SPM varied between 594 μg/m^3 to 620 μg/m^3 at selected monitoring sites while the minimum levels varied between 209μg/m^3 to 220 μg/m^3. These values were observed always above the National Ambient Air Quality Standards (NAAQS) set by the State regulatory body. Major sources of SPM were identified as the industrial activity and traffic plying on the national highway. Collected SPM samples were further analyzed for the ignitable matter as loss on ignition (LOI) and organic tarry matter (OTM) content. Ignitable component of the SPM constituted about 45% and tarry matter in the ambient air was about 12%. Effects of meteorological parameters like temperature, wind direction and wind speed on SPM levels are discussed.展开更多
The U.S. EPA (Environmental Protection Agency) established the CASTNET (Clean Air Status and Trends Network) and its predecessor, the NDDN (national dry deposition network), as national air quality and meteorolo...The U.S. EPA (Environmental Protection Agency) established the CASTNET (Clean Air Status and Trends Network) and its predecessor, the NDDN (national dry deposition network), as national air quality and meteorological monitoring networks. Both CASTNET and NDDN were designed to measure concentrations of sulfur and nitrogen gases and particles. Both networks also estimate dry deposition using an inferential model. The design was based on the concept that atmospheric dry deposition flux could be estimated as the product of a measured air pollutant concentration and a modeled deposition velocity (Vd). The MLM (multi-layer model), the computer model used to simulate dry deposition, requires information on meteorological conditions and vegetative cover as model input. The MLM calculates hourly Fa for each pollutant, but any missing meteorological data for an hour renders Vd missing for that hour. Because of percent completeness requirements for aggregating data for long-term estimates, annual deposition rates for some sites are not always available primarily because of missing or invalid meteorological input data. In this work, three methods for replacing missing on-site measurements are investigated. These include (1) using historical values of deposition velocity or (2) historical meteorological measurements from the site being modeled or (3) current meteorological data from nearby sites to substitute for missing inputs and thereby improve data completeness for the network's dry deposition estimates. Results for a CASTNET site used to test the methods show promise for using historical measurements of weekly average meteorological parameters.展开更多
An in-situ GC-ECD system was used to measure halocarbons at Shangdianzi (SDZ) GAW regional station. In this paper, we reported observational results of atmospheric CFC- 11 (CCI3F) mixing ratios from April 2007 to ...An in-situ GC-ECD system was used to measure halocarbons at Shangdianzi (SDZ) GAW regional station. In this paper, we reported observational results of atmospheric CFC- 11 (CCI3F) mixing ratios from April 2007 to March 2008. The CFC- 11 time series showed large variability. Approximately 62% observed values were filtered as non-background data. The median, 10% and 90% percentiles of CFC-11 background mixing ratios were 245.4 ppt (10-12 mol/mol), 244.6 ppt and 246.1 ppt, respectively; whereas those of non-background CFC- 11 mixing ratios were 254.7, 246.6 and 272.1 ppt, respectively. Significant differences in background and non-background CFC-11 mixing ratios were observed between summer and autumn, mainly because of the CFC-11 stored in loam being prone to atmospheric release in hot seasons. Comparison of tile SDZ data with the five AGAGE stations suggested agreement with mid-high latitude Northern Hemisphere stations MHD, THD and RPB. The SDZ data were higher than that of Southern Hemisphere stations CGO and SMO. Higher CFC-11 mixing ratios measured in different seasons were always associated with winds from the W-WSW-SW sector, indicating that the airflow coming from this wind sector has a positive contribution to CFC- 11 concentrations. The CFC-11 mixing ratios were higher in autumn and summer than in spring and winter, in which its mixing ratios were very close to the atmospheric background level. This was happened especially when airflow originated from the NNE-NE-ENE-E sector, indicating the air masses coming from these wind directions was relatively clean.展开更多
This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating(FBG). By virtue of FBG's temperature effect, we des...This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating(FBG). By virtue of FBG's temperature effect, we design a novel sensitive FBG temperature sensing probe to measure the temperature of cylinder head and inlet flow of diesel engine. We also establish the corresponding software platform for intuitive data analysis. The experimental and complementary simulation results simultaneously demonstrate that the FBG-based optical fiber technique possesses extraordinary reproducibility and sensitivity, which makes it feasible to monitor the temperature and inlet flow of diesel engine. Our work can provide an effective way to evaluate the thermal load of cylinder head in diesel engine.展开更多
文摘The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.
文摘The concentration of absorbable particulate matter less than 10 μm termed as PM10 is the most important urban air pollution index for air quality monitoring. This paper presents a space based PM10 monitoring algorithm based on QUAC (QUick atmosphere correction) for optical remote sensing data and SVR (support vector regression). PM 10 concentration measurements from nine ground based stations in Hangzhou, China and the MODIS (moderate-resolution imaging spectroradiometer) images were analyzed. Experimental result indicates that the correlation between CD (correction differences) with actual measured data is better than correlation between AOD (aerosol optical depth) with measured data. In addition, the fitting performance of the SVR model established with CD and measured data is better than traditional regression models.
文摘Using air pollution detecting equipments ITX, ATX620 and IBRID-MX6 Multi gas monitors a pioneer research was carried out to assess the levels of the exhausted gas emission in double-floored car parks of the Holy Prophet Mosque in Al-Madinah A l-Munawarah from early 12:00 to 14:00 of Friday and from 19:00 to 22:30 at holy month, Ramadan. The percentage of both carbon monoxide (CO) and nitrogen dioxide (NO2) had significantly increased (p 〈 0.05-0.005). The peak levels of these air pollutants were between 13:15-13:20 during Fridays. The increase in the emission of these exhausted gases was concomitant with the significant decrease (p 〈 0.05) in oxygen (02) levels but the latter recovered its levels after 13:20 hours. The arithmetic total mean density of vehicle per minute (vpm) at Salam Road, the busiest road of Al-Madinah, during hours (07:00-09:00), (13:00-15:00) and (17:00-19:00) of both Friday and Saturdays respectively were (8/45, 16/40 and 36/43). The increase in air pollution has been attributed to a dramatic increase in number of public cars use the car parks during these times, the consequent congestion at entries, the excess or/and poor consumption of fuels being utilized and the inadequate ventilation.
文摘Suspended particulate matter (SPM) levels in ambient air were monitored at Mandi Gobindgarh, an industrial town of Punjab, India located on the National Highway-1 during November 2001 to March 2002 covering spring and winter seasons to check the variation of SPM and its constituents in the town. The maximum levels of SPM varied between 594 μg/m^3 to 620 μg/m^3 at selected monitoring sites while the minimum levels varied between 209μg/m^3 to 220 μg/m^3. These values were observed always above the National Ambient Air Quality Standards (NAAQS) set by the State regulatory body. Major sources of SPM were identified as the industrial activity and traffic plying on the national highway. Collected SPM samples were further analyzed for the ignitable matter as loss on ignition (LOI) and organic tarry matter (OTM) content. Ignitable component of the SPM constituted about 45% and tarry matter in the ambient air was about 12%. Effects of meteorological parameters like temperature, wind direction and wind speed on SPM levels are discussed.
文摘The U.S. EPA (Environmental Protection Agency) established the CASTNET (Clean Air Status and Trends Network) and its predecessor, the NDDN (national dry deposition network), as national air quality and meteorological monitoring networks. Both CASTNET and NDDN were designed to measure concentrations of sulfur and nitrogen gases and particles. Both networks also estimate dry deposition using an inferential model. The design was based on the concept that atmospheric dry deposition flux could be estimated as the product of a measured air pollutant concentration and a modeled deposition velocity (Vd). The MLM (multi-layer model), the computer model used to simulate dry deposition, requires information on meteorological conditions and vegetative cover as model input. The MLM calculates hourly Fa for each pollutant, but any missing meteorological data for an hour renders Vd missing for that hour. Because of percent completeness requirements for aggregating data for long-term estimates, annual deposition rates for some sites are not always available primarily because of missing or invalid meteorological input data. In this work, three methods for replacing missing on-site measurements are investigated. These include (1) using historical values of deposition velocity or (2) historical meteorological measurements from the site being modeled or (3) current meteorological data from nearby sites to substitute for missing inputs and thereby improve data completeness for the network's dry deposition estimates. Results for a CASTNET site used to test the methods show promise for using historical measurements of weekly average meteorological parameters.
基金supported by Non-profit Research Project to Serve the Public Interest (Grant No. GYHY200806026)International S&T Cooperation Program of MOST (Grant No. 2007DFA20650)Research Fund for Returned Overseas Chinese Scholars of the State Education Ministry (Grant No. [2009]1108)
文摘An in-situ GC-ECD system was used to measure halocarbons at Shangdianzi (SDZ) GAW regional station. In this paper, we reported observational results of atmospheric CFC- 11 (CCI3F) mixing ratios from April 2007 to March 2008. The CFC- 11 time series showed large variability. Approximately 62% observed values were filtered as non-background data. The median, 10% and 90% percentiles of CFC-11 background mixing ratios were 245.4 ppt (10-12 mol/mol), 244.6 ppt and 246.1 ppt, respectively; whereas those of non-background CFC- 11 mixing ratios were 254.7, 246.6 and 272.1 ppt, respectively. Significant differences in background and non-background CFC-11 mixing ratios were observed between summer and autumn, mainly because of the CFC-11 stored in loam being prone to atmospheric release in hot seasons. Comparison of tile SDZ data with the five AGAGE stations suggested agreement with mid-high latitude Northern Hemisphere stations MHD, THD and RPB. The SDZ data were higher than that of Southern Hemisphere stations CGO and SMO. Higher CFC-11 mixing ratios measured in different seasons were always associated with winds from the W-WSW-SW sector, indicating that the airflow coming from this wind sector has a positive contribution to CFC- 11 concentrations. The CFC-11 mixing ratios were higher in autumn and summer than in spring and winter, in which its mixing ratios were very close to the atmospheric background level. This was happened especially when airflow originated from the NNE-NE-ENE-E sector, indicating the air masses coming from these wind directions was relatively clean.
基金supported by the National Natural Science Foundation of China(Nos.61271073 and 61473175)the Fundamental Research Funds of Shandong University(No.2015JC040)
文摘This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating(FBG). By virtue of FBG's temperature effect, we design a novel sensitive FBG temperature sensing probe to measure the temperature of cylinder head and inlet flow of diesel engine. We also establish the corresponding software platform for intuitive data analysis. The experimental and complementary simulation results simultaneously demonstrate that the FBG-based optical fiber technique possesses extraordinary reproducibility and sensitivity, which makes it feasible to monitor the temperature and inlet flow of diesel engine. Our work can provide an effective way to evaluate the thermal load of cylinder head in diesel engine.