A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepa...A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed.展开更多
Ti-6 Al-4 V alloy powder was processed by electrode induction melting gas atomization(EIGA)at high gas pressure(5.5-7.0 MPa).The effects of atomizing gas pressure on the powder characteristics and the microstructure,a...Ti-6 Al-4 V alloy powder was processed by electrode induction melting gas atomization(EIGA)at high gas pressure(5.5-7.0 MPa).The effects of atomizing gas pressure on the powder characteristics and the microstructure,along with the mechanical properties of the as-fabricated block by laser melting deposition(LMD),were investigated.The results indicate that the diameters of powders are distributed in a wide range of sizes from 1 to 400μm,and the median powder size(d50)decreases with increasing gas pressure.The powders with a size fraction of 100-150μm obtained at gas pressures of 6.0 and 6.5 MPa have better flowability.The oxygen content is consistent with the change trend of gas pressure within a low range of 0.06%-0.20%.Specimens fabricated by LMD are mainly composed ofα+βgrains with a fine lamellar Widmanstatten structures and have the ultimate tensile strength(UTS)and yield strength of approximately 1100 and 1000 MPa,respectively.Furthermore,the atomized powders have a favorable 3 D printing capability,and the mechanical properties of Ti-6 Al-4 V alloys manufactured by LMD typically exceed those of their cast or wrought counterparts.展开更多
Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)d...Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN.展开更多
Beijing experienced serious haze pollution from 24 November 2015 to 2 December 2015.To investigate the planetary boundary layer characteristics,especially turbulence characteristics,the authors analyzed the wind,tempe...Beijing experienced serious haze pollution from 24 November 2015 to 2 December 2015.To investigate the planetary boundary layer characteristics,especially turbulence characteristics,the authors analyzed the wind,temperature,humidity,and turbulence characteristics during heavily polluted weather by using the observational data of the 325-m meteorological tower in Beijing.The results indicate that the pollution was mainly caused by the easterly and southerly winds.There were negative correlations between wind speed,turbulent kinetic energy,friction velocity,and the PM2.5 concentration.During clean days,the wind speed greatly enhanced with height;however,during the period of heavy pollution,the wind speed changed a little from the nearsurface layer to the top of the tower.In contrast,the spatial variability of TKE from the nearsurface layer to the upper layer was not so obvious.The heavy haze pollution in this study was often characterized by the emergence of an inversion layer;therefore,the diurnal variation of the boundary layer temperature was very small.At the time of serious pollution,the relative humidity was near 100%.The diurnal variations of sensible heat flux and water vapor flux were significantly reduced when severe pollution occurred.展开更多
Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thu...Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.展开更多
Liquids to be broken up using a prefilming airblast atomizer are usually Newton liquids with relatively low viscosities.While in some industrial processes,such as spray drying,liquids to be atomized are high concentra...Liquids to be broken up using a prefilming airblast atomizer are usually Newton liquids with relatively low viscosities.While in some industrial processes,such as spray drying,liquids to be atomized are high concentration suspensions or non-Newtonian fluids with high viscosities.In this paper,non-Newtonian fluids with viscosity up to 4.4 Pa·s were effectively atomized using a specially designed prefilming airblast atomizer.The atomizer enabled liquid to extend to a thickness-adjustable film and forced the atomizing air stream to swirl with 30° or 45° through gas distributors with spiral slots.The liquid film was impinged by the swirling air stream resulting in the disintegration of the film into drops.Drop sizes were measured using a laser diffraction technique.An improved four-parameter mathematical model was established to relate the Sauter mean diameter of drops to the atomization conditions in terms of power dependencies on three dimensionless groups:Weber number,Ohnesorge number and air liquid mass ratio.The friction on the surface of the liquid film made by swirling air stream played an important role in the prefilming atomization at the conditions of low air velocity and low liquid viscosity.In this case,the liquid film was disintegrated into drops according to the classical wavy-sheet mechanism,thus thinner liquid films and high swirl levels of the atomizing air produced smaller drops.With the increase of the air velocity and the liquid viscosity,the effect of the friction on the prefilming atomization relatively weakened,whereas the impingement on the liquid film made by atomizing air stream in a direction normal to the liquid film and corresponding momentum transfer gradually strengthened and eventually dominated the disruption of liquid into drops,which induced that the initial thickness of the liquid film and the swirl of atomizing air stream exercised a minor influence on the drop sizes.展开更多
Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in s...Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.展开更多
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest...The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.展开更多
In a gas turbine engine combustor, highly swiding combustion is usually adopted to stabilize flame and reduce pollutant emissions. Swirl cup, as an air blast atomizer, is widely used to provide a uniform presentation ...In a gas turbine engine combustor, highly swiding combustion is usually adopted to stabilize flame and reduce pollutant emissions. Swirl cup, as an air blast atomizer, is widely used to provide a uniform presentation of fuel droplets to the combustor dome. This paper investigated the effect of secondary swirler on the flow field down- stream of the swirl cup using particle image velocimetry (PIV). Three swirl cups' non-reacting flow field were studied: case A, B and C with secondary swirler vane angle 53°, 60° and 68° respectively. Detailed mean and transient velocities and vorticity in the center plane were obtained. From the PIV results, a sharp contrast flow field was obtained for case A to other two cases due to the lower secondary swirling intensity. The recirculation zone is collapsed in disorder for the case A. Ignition tests of the three cups were completed in a single cup com- bustor. In general, the ignition performance increases with the increasing of the secondary swirling intensity. For case A, the ignition performance is very unstable and has much randomness and there is no clear lean ignition boundary can be generated. This work can further understand the swirl behavior and ignition mechanism.展开更多
Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effect...Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effects of spray parameters on droplets Santer mean diameter (SMD), droplet collision speed, the thickness of liquid-film, the surface temperature and its uniformity were analyzed in the present study. The simulation results and the experimental data obtained in the available literature agree within 13.8%, The computational results show that the spray pressure is the main factor to realize the atomization. Increasing the mass flux and the spray pressure, the droplet collision speed increases while the corresponding maximum film thickness on the heated surface declines. The surface temperature changes indistinctively with the increase of the spray distance, but the temperature distribution tends to be uniform.展开更多
This paper analyzes the behavior of coating particle as Well as the gas flow both of inside and outside the High-Velocity Oxy-Fuel (HVOF) thermal spraying gun by using quasi-one-dimensional analysis and numerical simu...This paper analyzes the behavior of coating particle as Well as the gas flow both of inside and outside the High-Velocity Oxy-Fuel (HVOF) thermal spraying gun by using quasi-one-dimensional analysis and numerical simulation. The HVOF gun in the present analysis is an axisymmetric convergent-divergent nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. In the present analysis it is assumed that the influence of the particles injected in the gas flow is neglected, and the interaction between the particles is also neglected. The gas flow in the gun is assumed to be quasi-one-dimensional adiabatic flow. The velocity, temperature and density of gas in the jet discharged from the barrel exit are predicted by solving Navier-Stokes equations numerically. The particle equation of motion is numerically integrated using three-step Runge-Kutta method. The drag coefficient of the particle is calculated by linear interpolation of the experimental data obtained in the past. Particle mean temperature is calculated by using Ranz and Marchalls' correlation for spherical particles. From the present analysis, the distributions of velocity and temperature of the coating particles flying inside and outside the HVOF gun are predicted.展开更多
The heat transfer performance of a mist/air jet impingement on a constant-heat flux surface was experimentally investigated.Two objectives were outlined in the current study.The first objective is to assess the effect...The heat transfer performance of a mist/air jet impingement on a constant-heat flux surface was experimentally investigated.Two objectives were outlined in the current study.The first objective is to assess the effects of mist/air volumetric flow rate ratio,impinging mode and heat flux on the heat transfer characteristics of free mist/air jet impingement.The second objective is to assess the effect of swirl flow induced by the spinning grinding wheel on the mist/air jet impingement,simulating the heat transfer process on a grinding work-piece surface subjected to the mist/air jet impingement.The results show that the addition of dilute water droplets to air flow results in significant heat transfer enhancement.Once the mist/air ratio is increased to a certain value,the increase of heat transfer with the mist/air ratio becomes slow.For a given mist/air ratio,as the increase of heat flux,the contribution of droplet evaporation to the overall heat transfer is weakened relatively,resulting in a decrease of heat transfer enhancement in comparison to the lower heat flux case.The heat transfer coefficient in the stagnation region for the oblique jet is much lower than the normal mist/air jet impingement,while in the region away from the stagnation,the local heat transfer coefficient for the oblique jet is higher than the normal jet.As regards as the mist/air jet impingement in the vicinity of grinding zone is concerned,when the jet impinging direction is consistent with the rotating direction of rotating disk,the swirl flow induced by the rotating disk could entrain more droplets to enter the jet impinging stagnation zone,which is beneficial to convective heat transfer enhancement.Furthermore,as the rotational speed of disk increases,the temperature deceases in impinging jet stagnation zone.展开更多
文摘A self-invented atomization process, in which molten metal is atomized into powder by a high-velocity gas stream carrying solid particles as the atomization medium, was introduced. The characteristics of powders prepared by common gas atomization and dual-phase flow atomization under similar conditions were compared. The experimental results show that the dual-phase flow-atomized powders have average particle sizes that are one-half that of the common gas-atomized particles;additionally, they possess a finer microstructure and higher cooling rate under the same atomization gas pressure and the same gas flow. The Weber number in the crash criteria of liquid atomization is adopted to measure the crash ability of the atomization media. The Weber number of the dual-phase flow atomization medium is the sum of that of the gas and the solid particles. Furthermore, the critical equation of the crash model in dual-phase flow atomization is established, and the main regularities associated with this process were analyzed.
基金Project(2017YFB0305801)supported by the National Key R&D Program of ChinaProject(U1508213)supported by the Joint-Fund of NSFC-Liaoning,ChinaProject(51771051)supported by the National Natural Science Foundation of China.
文摘Ti-6 Al-4 V alloy powder was processed by electrode induction melting gas atomization(EIGA)at high gas pressure(5.5-7.0 MPa).The effects of atomizing gas pressure on the powder characteristics and the microstructure,along with the mechanical properties of the as-fabricated block by laser melting deposition(LMD),were investigated.The results indicate that the diameters of powders are distributed in a wide range of sizes from 1 to 400μm,and the median powder size(d50)decreases with increasing gas pressure.The powders with a size fraction of 100-150μm obtained at gas pressures of 6.0 and 6.5 MPa have better flowability.The oxygen content is consistent with the change trend of gas pressure within a low range of 0.06%-0.20%.Specimens fabricated by LMD are mainly composed ofα+βgrains with a fine lamellar Widmanstatten structures and have the ultimate tensile strength(UTS)and yield strength of approximately 1100 and 1000 MPa,respectively.Furthermore,the atomized powders have a favorable 3 D printing capability,and the mechanical properties of Ti-6 Al-4 V alloys manufactured by LMD typically exceed those of their cast or wrought counterparts.
基金the National Natural Science Foundation of China(No.52074157)Shenzhen Science and Technology Innovation Com-mission,China(Nos.JSGG20180508152608855,KQTD20170328154443162)Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials,China(No.ZDSYS201703031748354).
文摘Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN.
基金Supported by the National Key Research and Development Program of China [grant numbers 2017YFC0209600 and 2016YFC0208802]
文摘Beijing experienced serious haze pollution from 24 November 2015 to 2 December 2015.To investigate the planetary boundary layer characteristics,especially turbulence characteristics,the authors analyzed the wind,temperature,humidity,and turbulence characteristics during heavily polluted weather by using the observational data of the 325-m meteorological tower in Beijing.The results indicate that the pollution was mainly caused by the easterly and southerly winds.There were negative correlations between wind speed,turbulent kinetic energy,friction velocity,and the PM2.5 concentration.During clean days,the wind speed greatly enhanced with height;however,during the period of heavy pollution,the wind speed changed a little from the nearsurface layer to the top of the tower.In contrast,the spatial variability of TKE from the nearsurface layer to the upper layer was not so obvious.The heavy haze pollution in this study was often characterized by the emergence of an inversion layer;therefore,the diurnal variation of the boundary layer temperature was very small.At the time of serious pollution,the relative humidity was near 100%.The diurnal variations of sensible heat flux and water vapor flux were significantly reduced when severe pollution occurred.
基金Supported by the Marine Science and Technology Projects of Shanghai Committee of Science and Technology,China(No.10DZ1210802)
文摘Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification.
文摘Liquids to be broken up using a prefilming airblast atomizer are usually Newton liquids with relatively low viscosities.While in some industrial processes,such as spray drying,liquids to be atomized are high concentration suspensions or non-Newtonian fluids with high viscosities.In this paper,non-Newtonian fluids with viscosity up to 4.4 Pa·s were effectively atomized using a specially designed prefilming airblast atomizer.The atomizer enabled liquid to extend to a thickness-adjustable film and forced the atomizing air stream to swirl with 30° or 45° through gas distributors with spiral slots.The liquid film was impinged by the swirling air stream resulting in the disintegration of the film into drops.Drop sizes were measured using a laser diffraction technique.An improved four-parameter mathematical model was established to relate the Sauter mean diameter of drops to the atomization conditions in terms of power dependencies on three dimensionless groups:Weber number,Ohnesorge number and air liquid mass ratio.The friction on the surface of the liquid film made by swirling air stream played an important role in the prefilming atomization at the conditions of low air velocity and low liquid viscosity.In this case,the liquid film was disintegrated into drops according to the classical wavy-sheet mechanism,thus thinner liquid films and high swirl levels of the atomizing air produced smaller drops.With the increase of the air velocity and the liquid viscosity,the effect of the friction on the prefilming atomization relatively weakened,whereas the impingement on the liquid film made by atomizing air stream in a direction normal to the liquid film and corresponding momentum transfer gradually strengthened and eventually dominated the disruption of liquid into drops,which induced that the initial thickness of the liquid film and the swirl of atomizing air stream exercised a minor influence on the drop sizes.
基金Supported by National Key Laboratory of Bubble Physics and Natural Circulation (2005)
文摘Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.
基金supported by the Science and Technology Research and Development Plan of Hebei Province, China (12276710D)
文摘The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.
文摘In a gas turbine engine combustor, highly swiding combustion is usually adopted to stabilize flame and reduce pollutant emissions. Swirl cup, as an air blast atomizer, is widely used to provide a uniform presentation of fuel droplets to the combustor dome. This paper investigated the effect of secondary swirler on the flow field down- stream of the swirl cup using particle image velocimetry (PIV). Three swirl cups' non-reacting flow field were studied: case A, B and C with secondary swirler vane angle 53°, 60° and 68° respectively. Detailed mean and transient velocities and vorticity in the center plane were obtained. From the PIV results, a sharp contrast flow field was obtained for case A to other two cases due to the lower secondary swirling intensity. The recirculation zone is collapsed in disorder for the case A. Ignition tests of the three cups were completed in a single cup com- bustor. In general, the ignition performance increases with the increasing of the secondary swirling intensity. For case A, the ignition performance is very unstable and has much randomness and there is no clear lean ignition boundary can be generated. This work can further understand the swirl behavior and ignition mechanism.
基金supported by National Natural Science Foundation of China (No.50776087).
文摘Numerical simulations have been carried out to investigate the liquid atomization and spray process using the Discrete Phase Model of the commercial CFD code combined with the Wall-Film boundary conditions. The effects of spray parameters on droplets Santer mean diameter (SMD), droplet collision speed, the thickness of liquid-film, the surface temperature and its uniformity were analyzed in the present study. The simulation results and the experimental data obtained in the available literature agree within 13.8%, The computational results show that the spray pressure is the main factor to realize the atomization. Increasing the mass flux and the spray pressure, the droplet collision speed increases while the corresponding maximum film thickness on the heated surface declines. The surface temperature changes indistinctively with the increase of the spray distance, but the temperature distribution tends to be uniform.
文摘This paper analyzes the behavior of coating particle as Well as the gas flow both of inside and outside the High-Velocity Oxy-Fuel (HVOF) thermal spraying gun by using quasi-one-dimensional analysis and numerical simulation. The HVOF gun in the present analysis is an axisymmetric convergent-divergent nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. In the present analysis it is assumed that the influence of the particles injected in the gas flow is neglected, and the interaction between the particles is also neglected. The gas flow in the gun is assumed to be quasi-one-dimensional adiabatic flow. The velocity, temperature and density of gas in the jet discharged from the barrel exit are predicted by solving Navier-Stokes equations numerically. The particle equation of motion is numerically integrated using three-step Runge-Kutta method. The drag coefficient of the particle is calculated by linear interpolation of the experimental data obtained in the past. Particle mean temperature is calculated by using Ranz and Marchalls' correlation for spherical particles. From the present analysis, the distributions of velocity and temperature of the coating particles flying inside and outside the HVOF gun are predicted.
基金supported by the National Natural Science Foundation of China(Grant No.51076063)
文摘The heat transfer performance of a mist/air jet impingement on a constant-heat flux surface was experimentally investigated.Two objectives were outlined in the current study.The first objective is to assess the effects of mist/air volumetric flow rate ratio,impinging mode and heat flux on the heat transfer characteristics of free mist/air jet impingement.The second objective is to assess the effect of swirl flow induced by the spinning grinding wheel on the mist/air jet impingement,simulating the heat transfer process on a grinding work-piece surface subjected to the mist/air jet impingement.The results show that the addition of dilute water droplets to air flow results in significant heat transfer enhancement.Once the mist/air ratio is increased to a certain value,the increase of heat transfer with the mist/air ratio becomes slow.For a given mist/air ratio,as the increase of heat flux,the contribution of droplet evaporation to the overall heat transfer is weakened relatively,resulting in a decrease of heat transfer enhancement in comparison to the lower heat flux case.The heat transfer coefficient in the stagnation region for the oblique jet is much lower than the normal mist/air jet impingement,while in the region away from the stagnation,the local heat transfer coefficient for the oblique jet is higher than the normal jet.As regards as the mist/air jet impingement in the vicinity of grinding zone is concerned,when the jet impinging direction is consistent with the rotating direction of rotating disk,the swirl flow induced by the rotating disk could entrain more droplets to enter the jet impinging stagnation zone,which is beneficial to convective heat transfer enhancement.Furthermore,as the rotational speed of disk increases,the temperature deceases in impinging jet stagnation zone.