A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow charact...A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow characteristics of this novel air curtain jet ventilation system,a full-scale room was used to measure the jet velocity with a slot-ventilated supply device,with regards to the airflow fields along the vertical wall as well as on the horizontal floor zones.The airflow fields under three supply air velocities,1.0,1.5 and 2.0 m/s,were carried out in the full-scale room.The experimental results show the velocity profiles of air distribution,the airflow fields along the attached vertical wall and the air lake zones on the floor,respectively.The current experimental research is helpful for heating,ventilation and air conditioning(HVAC) engineers to design better air distribution in rooms.展开更多
Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission sce...Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.展开更多
The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temp...The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.展开更多
Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In ...Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In order to adapt it to different research domains,different combination and fired models are needed.At the present time,there are two fired models of air-gun source,namely,reinforced initial pulse and reinforced first bubble pulse.The fired time,space between single guns,frequency and resolution of the two models are different.This comparison can supply the basis for its extensive application.展开更多
In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat t...In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat terns have been developed based on force balance. The effects of the orientation of gasliquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient airwater system, thesultable gasllquid flow pattern is important to obtain smaller bubbles under the low velocity liquid crossflow con ditions with stainless steel spargers. Among the four types of gasliquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found tobe insgnifican whenliq.uid velocity is.higher than. 3.2 m;sa or theorifice diameter is small enough.展开更多
Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-...Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.展开更多
In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be r...In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be recharged in high efficiency.With equal heat transfer capabilities of exhaust-air coil and borehole collector,the system provides a maximum overall efficiency.However,due to ground infinite capacity,the optimum brine flow rate is different from conventional two-exchanger system.The recharging system provides two peak overall efficiencies when the capacity ratio Cr=5 for laminar flow and Cr=15 for turbulent flow respectively.The overall efficiency is independent of exhaust-air temperature and undisturbed ground temperature,although the fluid properties depend on temperature.In practical system lower ethyl percentage brine should be chosen if the freezing point meets the system request,which can provide a higher overall efficiency.展开更多
Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008...Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.展开更多
Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present ...Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.展开更多
Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ...Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.展开更多
The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibr...The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibrated and generated for the possible future scenarios of meteorological variables, which are temperature and rainfall by using GCMs (global climate models). The GCM used is SRES A2. The downscaled meteorological variables corresponding to SDSM were then used as input to the ANNs model calibrated with observed station data to simulate the corresponding future streamflow changes in the sub-catchment of Kurau River. This study has discovered the hydrological trend over the catchment. The projected monthly streamflow has shown a decreasing trend due to the increase in the, mean of temperature for overall months, except the month of August and November.展开更多
基金Projects(50778145, 50278025) supported by the National Natural Science Foundation of ChinaProject(2009ZDKG-47) supported by "13115" Science and Technology Innovation Program of Shaanxi Province, China
文摘A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow characteristics of this novel air curtain jet ventilation system,a full-scale room was used to measure the jet velocity with a slot-ventilated supply device,with regards to the airflow fields along the vertical wall as well as on the horizontal floor zones.The airflow fields under three supply air velocities,1.0,1.5 and 2.0 m/s,were carried out in the full-scale room.The experimental results show the velocity profiles of air distribution,the airflow fields along the attached vertical wall and the air lake zones on the floor,respectively.The current experimental research is helpful for heating,ventilation and air conditioning(HVAC) engineers to design better air distribution in rooms.
基金supported by the National Basic Research Program of China (Grant No. 2010CB 950903)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.
基金Supported by the National High Technology Research and Development of China(2012AA053101,2011AA050106)the National Key State Basic Research Development Program of China(2010CB227004)the National Natural Science Foundation of China(21376081)
文摘The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.
基金The research was funded under the project of NSFC(Grant number:NSFC40234038)Joint Earthquake Science Foundation,China(Grant No.105108)
文摘Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In order to adapt it to different research domains,different combination and fired models are needed.At the present time,there are two fired models of air-gun source,namely,reinforced initial pulse and reinforced first bubble pulse.The fired time,space between single guns,frequency and resolution of the two models are different.This comparison can supply the basis for its extensive application.
基金Supported by the National Natural Science Foundation of China (20736009).
文摘In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat terns have been developed based on force balance. The effects of the orientation of gasliquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient airwater system, thesultable gasllquid flow pattern is important to obtain smaller bubbles under the low velocity liquid crossflow con ditions with stainless steel spargers. Among the four types of gasliquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found tobe insgnifican whenliq.uid velocity is.higher than. 3.2 m;sa or theorifice diameter is small enough.
基金Supported by the National Natural Science Foundation of China(No.51478297)Program of Introducing Talents of Discipline(No.B13011)
文摘Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.
文摘In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be recharged in high efficiency.With equal heat transfer capabilities of exhaust-air coil and borehole collector,the system provides a maximum overall efficiency.However,due to ground infinite capacity,the optimum brine flow rate is different from conventional two-exchanger system.The recharging system provides two peak overall efficiencies when the capacity ratio Cr=5 for laminar flow and Cr=15 for turbulent flow respectively.The overall efficiency is independent of exhaust-air temperature and undisturbed ground temperature,although the fluid properties depend on temperature.In practical system lower ethyl percentage brine should be chosen if the freezing point meets the system request,which can provide a higher overall efficiency.
基金the Finnish Cultural Foundation and Maa-ja vesitekniikan tuki r.y. (MVTT, 29188) for funding this researchsupported by Swedish VR, BECC and MERGE programs
文摘Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.
基金supported by the National Natural Science Foundation of China(2009CB421407 and 2010CB950501)
文摘Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.
基金Project(2017YFE0102800)supported by the National Key R&D Program of ChinaProject(19JCYBJC21200)supported by the Tianjin Natural Science Foundation,China。
文摘Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.
文摘The paper describes the application of SDSM (statistical downscaling model) and ANNs (artificial neural networks) models for prediction of the hydrological trend due to the climate-change. The SDSM has been calibrated and generated for the possible future scenarios of meteorological variables, which are temperature and rainfall by using GCMs (global climate models). The GCM used is SRES A2. The downscaled meteorological variables corresponding to SDSM were then used as input to the ANNs model calibrated with observed station data to simulate the corresponding future streamflow changes in the sub-catchment of Kurau River. This study has discovered the hydrological trend over the catchment. The projected monthly streamflow has shown a decreasing trend due to the increase in the, mean of temperature for overall months, except the month of August and November.