Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission sce...Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.展开更多
Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008...Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.展开更多
The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temp...The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.展开更多
Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experime...Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.展开更多
Iraq is facing water shortage problem despite the presence of the Tigris and Euphrates Rivers. In this research, long rainfall trends up to the year 2099 were studied in Sulaimani city northeast Iraq to give an idea a...Iraq is facing water shortage problem despite the presence of the Tigris and Euphrates Rivers. In this research, long rainfall trends up to the year 2099 were studied in Sulaimani city northeast Iraq to give an idea about future prospects. The medium high (A2) and medium low B2 scenarios have been used for purpose of this study as they are more likely than others scenarios, that beside the fact that no climate modeling canter has performed GCM (global climate model) simulations for more than a few emissions scenarios (HadCM3 has only these two scenarios) otherwise pattern scaling can be used for generating different scenarios which entail a huge uncertainty. The results indicate that the average annual rainfall shows a significant downward trend for both A2 and B2 scenarios. In addition, winter projects increase/decrease in the daily rainfall statistics of wet days, the spring season show very slight drop and no change for both scenarios. However, both summer and autumn shows a significant reduction in maximum rainfall value especially in 2080s while the other statistics remain nearly the same. The extremes events are to decrease slightly in 2080s with highest decrease associated with A2 scenario. This is due to the fact that rainfall under scenario A2 is more significant than under scenario B2. The return period of a certain rainfall will increase in the future when a present storm of 20 year could occur once every 43 year in the 2080s. An increase in the frequency of extreme rainfall depends on several factors such as the return period, season of the year, the period considered as well as the emission scenario used.展开更多
Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage perfor- mance. However, it frequently occurs that a large amount of slotting products (mainly the coal slurry and gas) i...Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage perfor- mance. However, it frequently occurs that a large amount of slotting products (mainly the coal slurry and gas) intensely spurt out of the borehole during the slotting, which adversely affects the slotting efficiency. Despite extensive previous investigations on the mechanism and prevention-device design of the spurt during ordinary borehole drilling, a very few studies has focused on the spurt in the s Ottlng pro ] " _ cess. The slotting spurt is mainly caused by two reasons: the coal and gas outburst in the borehole and the borehole deslagging blockage. This paper focuses on the second reason, and investigates the hydraulic deslagging flow patterns in the annular space between the drill pipe and borehole wall Results show that there are six deslagging flow patterns when the drill pipe is still: pure slurry flow, pure gas flow, bubble flow, intermittent flow, layering flow and annular flow. When the drill pipe rotates, each of those six flow patterns changes due to the Taylor vortex effect. Outcomes of this study could help to better understand the slotting-spurt mechanism and provide guidance on the anti-spurt strategies through eliminating the borehole deslagging blockage.展开更多
A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Throug...A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.展开更多
A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as hi...A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.展开更多
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probabil...The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.展开更多
This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach ...This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach to improve the predictions made by the model. First, a set of hindcast experiments for summer climate over China during 1982-2010 are performed from the perspective of real-time prediction with the IAP9L-AGCM model and the IAP ENSO prediction system. Then a new approach that effectively combines the hind-cast with its correction is proposed to further improve the model's predictive ability. A systematic evaluation reveals that the model's real-time predictions for 41 stations across China show significant improvement using this new approach, especially in the lower reaches between the Yellow River and Yangtze River valleys.展开更多
The present study is concerned with the lifting of seabed materials by a BJT (bubble-jet-type) air-lift pump patented by Sadatomi. The targets are methane-hydrate rich muds on the bed about 200 m in depth around Jap...The present study is concerned with the lifting of seabed materials by a BJT (bubble-jet-type) air-lift pump patented by Sadatomi. The targets are methane-hydrate rich muds on the bed about 200 m in depth around Japan islands and rare-earth rich muds on the bed deeper than 4,000 m around Minami-Torishima islands in the Pacific Ocean. Feasibility studies were conducted using 50 mm I. D. (inner diameter) and 5.0 m long vertical pipe as the pump upriser, VC (vinyl chloride) particles and natural sands mixture in the methane-hydrate case, and ceramics particles with 3,761 kg/m^3 in density in the rare-earth case as the deposits. From the methane-hydrate simulation experiments, an efficient operation condition with high VC particles to sands lifting ratio has been clarified. In the rare-earth case, the air supplies from two different midways in the upriser pipe have been tested together with the bottom supply because the air supply from the upriser bottom is very hard in deep sea. The effects of the air supply position on the pump performance have been clarified by the experiments and the simulations with a revised model applicable to the midway air supply type.展开更多
First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather R...First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather Research and Forecasting(WRFV2.2),was used to simulate the heavy rainfall. Diagnostic analyses were done of moist potential vorticity(MPV)for its horizontal components(MPV2) and vertical components(MPV1)based on the simulation results of WRFV2.2 to identify the mechanism of the rainfall development.The results showed that the heavy rainfall occurred when there were high MPV1 in the upper levels and low MPV1 and high MPV2 in the lower levels.Disturbances of high MPV1 in the upper levels came from the southwest or northwest,those of low MPV1 in the lower levels came from the southwest,and those of high MPV2 came from the south.Disturbances of low MPV1 at low levels were the direct cause of convective instability.Enhanced vertical shear of meridional wind led to increased MPV2 at lower levels,strengthened baroclinicity,and active warm and wet flows.These distributions of MPV helped to trigger the release of unstable energy and produce warm-sector heavy rainfall.As it integrates the evolution of dynamic and thermal fields,MPV is able to reveal the development of this heavy rainfall effectively.展开更多
This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physi...This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.展开更多
Heat transfer coefficients between an immersed horizontal tube and an aerated vibrated fluidized bed are measured. There is a maximum value in the h-P experimental curve. The heat transfer coefficient increases with d...Heat transfer coefficients between an immersed horizontal tube and an aerated vibrated fluidized bed are measured. There is a maximum value in the h-P experimental curve. The heat transfer coefficient increases with decreases in particle diameter in the fully fluidized region. The particle density has less effect on the heat transfer coefficients. High amplitude and low frequency, or low amplitude and high frequency are favorable to heat transfer. Exceedingly high gas velocity is unfavorable to the surface-bed heat transfer. A model based on the 'pocket' theory was proposed for predicting the surface-to-bed heat transfer coefficients in fully fluidized region. The predictions from the model were compared with observed data. The reasonable fit suggests the adequacy of the model.展开更多
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc...Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).展开更多
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 ...Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 flow rate, ultrasonic intensity and initial concentration of dimethoate on degradation rate were investigated. UALR imposed a synergistic effect combining sonochemical merit with high O3 transfer rate. The results showed that UALR not only increased degradation rate, but also was better than the simole sum of degradation by O3 and ultrasound separately. Under the operation conditions of O3 flow of 0.34 m^3·h^-1, ultrasonic intensity 3.71 W.cm^-2, and initial concentration of dimethoate at 20 mg·L^- 1, the degradation rate of dimethoate increased to 80%. UALR seems an advisable choice for treating organic wastewater and this process may have wide application prospect in industry.展开更多
The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dyna...The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evalu- ated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during E1 Nifio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nifia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during E1 Nifio decaying summers and La Nifia decaying summers, respectively. The stronger magnitude above-normal rainfall during E1 Nifio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nifia decaying summers; less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations.展开更多
This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole exper...This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole experiment is a 111-year (1900--2010) continuous run at 50 km horizontal resolution. Comparisons of climatic means and seasonal cycles among observations, 20CR-v2, and WRF results during the last 30 years (1981-2010) in China are presented, with a focus on sur- face air temperature and precipitation in both summer and winter. The WRF results reproduce the main features of surface air temperature in the two seasons in China, and outperform 20CR-v2 in regional details due to topog- raphic forcing. Summer surface air temperature biases are reduced by as much as 1℃-2℃. For precipitation, the simulation results reproduce the decreasing pattern from Southeast to Northwest China in winter. For summer rainfall, the WRF simulation results reproduce the correct magnitude and position of heavy rainfall around the southeastern coastal area, and are better than 20CR-v2. One of the significant improvements is that an unrealistic center of summer precipitation in Southeast China present in 20CR-v2 is eliminated. However, the simulated results underestimate winter surface air temperature in northern China and winter rainfall in some regions in southeastern China. The mean seasonal cycles of surface air tempera- ture and precipitation are captured well over most of sub-regions by the WRF model.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB 950903)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.
基金the Finnish Cultural Foundation and Maa-ja vesitekniikan tuki r.y. (MVTT, 29188) for funding this researchsupported by Swedish VR, BECC and MERGE programs
文摘Long-term variations and trends in a wide range of statistics for daily precipitation characteristics in terms of intensity, frequency and duration in Finland were analysed using precipitation records during 1908e2008 from 3 meteorological stations in the south(Kaisaniemi),centre(Kajaani) and north(Sodankyl€a). Although precipitation days in northern part were more frequent than in central and southern parts, daily precipitation intensity in the south was generally higher than those in the centre and north of the country. Annual sum of very light precipitation(0 mm < daily precipitation long-term 50 th percentile of daily precipitation more than 0 mm) significantly( p < 0.05) decreased over time,with the highest rate in northern Finland. These decreasing trends might be the result of significant increases in frequency of days with very light precipitation at all the stations, with the highest and lowest rates in northern and southern Finland, respectively. Ratio of annual total precipitation to number of precipitation days also declined in Finland over 1908e2008, with a decreasing north to south gradient. However, annual duration indices of daily precipitation revealed no statistically significant trends at any station. Daily precipitation characteristics showed significant relationships with various well-known atmospheric circulation patterns(ACPs). In particular, the East Atlantic/West Russia(EA/WR)pattern in summer was the most influential ACP negatively associated with different daily precipitation intensity, frequency and duration indices at all three stations studied.
基金Supported by the National High Technology Research and Development of China(2012AA053101,2011AA050106)the National Key State Basic Research Development Program of China(2010CB227004)the National Natural Science Foundation of China(21376081)
文摘The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.
文摘Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.
文摘Iraq is facing water shortage problem despite the presence of the Tigris and Euphrates Rivers. In this research, long rainfall trends up to the year 2099 were studied in Sulaimani city northeast Iraq to give an idea about future prospects. The medium high (A2) and medium low B2 scenarios have been used for purpose of this study as they are more likely than others scenarios, that beside the fact that no climate modeling canter has performed GCM (global climate model) simulations for more than a few emissions scenarios (HadCM3 has only these two scenarios) otherwise pattern scaling can be used for generating different scenarios which entail a huge uncertainty. The results indicate that the average annual rainfall shows a significant downward trend for both A2 and B2 scenarios. In addition, winter projects increase/decrease in the daily rainfall statistics of wet days, the spring season show very slight drop and no change for both scenarios. However, both summer and autumn shows a significant reduction in maximum rainfall value especially in 2080s while the other statistics remain nearly the same. The extremes events are to decrease slightly in 2080s with highest decrease associated with A2 scenario. This is due to the fact that rainfall under scenario A2 is more significant than under scenario B2. The return period of a certain rainfall will increase in the future when a present storm of 20 year could occur once every 43 year in the 2080s. An increase in the frequency of extreme rainfall depends on several factors such as the return period, season of the year, the period considered as well as the emission scenario used.
文摘Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage perfor- mance. However, it frequently occurs that a large amount of slotting products (mainly the coal slurry and gas) intensely spurt out of the borehole during the slotting, which adversely affects the slotting efficiency. Despite extensive previous investigations on the mechanism and prevention-device design of the spurt during ordinary borehole drilling, a very few studies has focused on the spurt in the s Ottlng pro ] " _ cess. The slotting spurt is mainly caused by two reasons: the coal and gas outburst in the borehole and the borehole deslagging blockage. This paper focuses on the second reason, and investigates the hydraulic deslagging flow patterns in the annular space between the drill pipe and borehole wall Results show that there are six deslagging flow patterns when the drill pipe is still: pure slurry flow, pure gas flow, bubble flow, intermittent flow, layering flow and annular flow. When the drill pipe rotates, each of those six flow patterns changes due to the Taylor vortex effect. Outcomes of this study could help to better understand the slotting-spurt mechanism and provide guidance on the anti-spurt strategies through eliminating the borehole deslagging blockage.
基金supported by the "Strategic Priority Research Program-Climate Change: Carbon Budget andRelated Issue" of the Chinese Academy of Sciences (Grant No.XDA-05110303)the National Basic Research Program of China(Grant Nos. 2010CB951703 and 2009CB421403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos. KZCX2-YW-Q11-01 and KZCX2-YW-BR-14)
文摘A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.
文摘A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.
基金supported by the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)- Climate Sciencethe Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105019-3)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-04)
文摘The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.
基金jointly supported by the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration(GYHY201006022)the National Key Technologies R&D Program of China(2009BAC51B02)the National Basic Research Program of China(2010CB950304)
文摘This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach to improve the predictions made by the model. First, a set of hindcast experiments for summer climate over China during 1982-2010 are performed from the perspective of real-time prediction with the IAP9L-AGCM model and the IAP ENSO prediction system. Then a new approach that effectively combines the hind-cast with its correction is proposed to further improve the model's predictive ability. A systematic evaluation reveals that the model's real-time predictions for 41 stations across China show significant improvement using this new approach, especially in the lower reaches between the Yellow River and Yangtze River valleys.
文摘The present study is concerned with the lifting of seabed materials by a BJT (bubble-jet-type) air-lift pump patented by Sadatomi. The targets are methane-hydrate rich muds on the bed about 200 m in depth around Japan islands and rare-earth rich muds on the bed deeper than 4,000 m around Minami-Torishima islands in the Pacific Ocean. Feasibility studies were conducted using 50 mm I. D. (inner diameter) and 5.0 m long vertical pipe as the pump upriser, VC (vinyl chloride) particles and natural sands mixture in the methane-hydrate case, and ceramics particles with 3,761 kg/m^3 in density in the rare-earth case as the deposits. From the methane-hydrate simulation experiments, an efficient operation condition with high VC particles to sands lifting ratio has been clarified. In the rare-earth case, the air supplies from two different midways in the upriser pipe have been tested together with the bottom supply because the air supply from the upriser bottom is very hard in deep sea. The effects of the air supply position on the pump performance have been clarified by the experiments and the simulations with a revised model applicable to the midway air supply type.
基金Open Foundation of the Key Laboratory on Ocean-Atmospheric Chemistry and Global Change from State Oceanological Administration(GCMAC0809)Natural Science Foundation of China(40775068)Development Planning for Key Foundamental Research of China(2010CB428504))
文摘First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather Research and Forecasting(WRFV2.2),was used to simulate the heavy rainfall. Diagnostic analyses were done of moist potential vorticity(MPV)for its horizontal components(MPV2) and vertical components(MPV1)based on the simulation results of WRFV2.2 to identify the mechanism of the rainfall development.The results showed that the heavy rainfall occurred when there were high MPV1 in the upper levels and low MPV1 and high MPV2 in the lower levels.Disturbances of high MPV1 in the upper levels came from the southwest or northwest,those of low MPV1 in the lower levels came from the southwest,and those of high MPV2 came from the south.Disturbances of low MPV1 at low levels were the direct cause of convective instability.Enhanced vertical shear of meridional wind led to increased MPV2 at lower levels,strengthened baroclinicity,and active warm and wet flows.These distributions of MPV helped to trigger the release of unstable energy and produce warm-sector heavy rainfall.As it integrates the evolution of dynamic and thermal fields,MPV is able to reveal the development of this heavy rainfall effectively.
文摘This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.
基金Supported by the National Natural Science Foundation of China(No.29576253).
文摘Heat transfer coefficients between an immersed horizontal tube and an aerated vibrated fluidized bed are measured. There is a maximum value in the h-P experimental curve. The heat transfer coefficient increases with decreases in particle diameter in the fully fluidized region. The particle density has less effect on the heat transfer coefficients. High amplitude and low frequency, or low amplitude and high frequency are favorable to heat transfer. Exceedingly high gas velocity is unfavorable to the surface-bed heat transfer. A model based on the 'pocket' theory was proposed for predicting the surface-to-bed heat transfer coefficients in fully fluidized region. The predictions from the model were compared with observed data. The reasonable fit suggests the adequacy of the model.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41375104)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
文摘Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 flow rate, ultrasonic intensity and initial concentration of dimethoate on degradation rate were investigated. UALR imposed a synergistic effect combining sonochemical merit with high O3 transfer rate. The results showed that UALR not only increased degradation rate, but also was better than the simole sum of degradation by O3 and ultrasound separately. Under the operation conditions of O3 flow of 0.34 m^3·h^-1, ultrasonic intensity 3.71 W.cm^-2, and initial concentration of dimethoate at 20 mg·L^- 1, the degradation rate of dimethoate increased to 80%. UALR seems an advisable choice for treating organic wastewater and this process may have wide application prospect in industry.
基金supported by the China-UK-Swiss Adapting to Climate Change in China(ACCC)Project-Climate Sciencethe Chinese Academy of Science Project under Grant KZCX2-YW-Q11-04
文摘The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evalu- ated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during E1 Nifio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nifia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during E1 Nifio decaying summers and La Nifia decaying summers, respectively. The stronger magnitude above-normal rainfall during E1 Nifio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nifia decaying summers; less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations.
基金supported by the National Basic Research Program of China (Grant No. 2013CB430201)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010404)
文摘This study presents a dynamically downscaled climatology over East Asia using the non-hydrostatic Weather Research and Forecasting (WRF) model, forced by the Twentieth Century Reanalysis (20CR-v2). The whole experiment is a 111-year (1900--2010) continuous run at 50 km horizontal resolution. Comparisons of climatic means and seasonal cycles among observations, 20CR-v2, and WRF results during the last 30 years (1981-2010) in China are presented, with a focus on sur- face air temperature and precipitation in both summer and winter. The WRF results reproduce the main features of surface air temperature in the two seasons in China, and outperform 20CR-v2 in regional details due to topog- raphic forcing. Summer surface air temperature biases are reduced by as much as 1℃-2℃. For precipitation, the simulation results reproduce the decreasing pattern from Southeast to Northwest China in winter. For summer rainfall, the WRF simulation results reproduce the correct magnitude and position of heavy rainfall around the southeastern coastal area, and are better than 20CR-v2. One of the significant improvements is that an unrealistic center of summer precipitation in Southeast China present in 20CR-v2 is eliminated. However, the simulated results underestimate winter surface air temperature in northern China and winter rainfall in some regions in southeastern China. The mean seasonal cycles of surface air tempera- ture and precipitation are captured well over most of sub-regions by the WRF model.