A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C...A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.展开更多
Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage a...Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage and geological hazards, such as rock falls. These archaeological sites suffered deterioration and failure of some parts. Environmental hazards are the main agent responsible for the monument degrading knowledge of intensity of environmental hazards together with their aggressiveness characteristics surrounding the monumentally area which is important during all phases restoration process (both previous and to be executed in situ). The main geo-environmental hazards which affect the monuments under investigation; weathering, air pollution, seismic activity.展开更多
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter...In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.展开更多
Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically in...Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the singlephase water flow model (i.e., the Richards Equation) or the waterair two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.展开更多
基金Project(2013CB228005) supported by the National Program on Key Fundamental Research Project of ChinaProject(14ZB0047) supported by the Department of Education of Sichuan Province,China
文摘A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.
文摘Archaeological sites are most visible records of our cultural heritage, These sites are often constructed of stone threaten by geomorphological processing, pollution, urbanization, public access, groundwater seepage and geological hazards, such as rock falls. These archaeological sites suffered deterioration and failure of some parts. Environmental hazards are the main agent responsible for the monument degrading knowledge of intensity of environmental hazards together with their aggressiveness characteristics surrounding the monumentally area which is important during all phases restoration process (both previous and to be executed in situ). The main geo-environmental hazards which affect the monuments under investigation; weathering, air pollution, seismic activity.
基金Supported by Tianjin Construction Committee Technology Project (No2007-37)
文摘In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50839004, 51079107) the Program for New Centu-ry Excellent Talents in University (Grant No. NCET-09-0610)
文摘Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the singlephase water flow model (i.e., the Richards Equation) or the waterair two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.