Flow and concentration fields of liquid phase in a gas-liquid contacting system are simulated to showthe Rayleigh convection by utilizing the finite-element method. The Schlieren images in CO2-ethanol system provided ...Flow and concentration fields of liquid phase in a gas-liquid contacting system are simulated to showthe Rayleigh convection by utilizing the finite-element method. The Schlieren images in CO2-ethanol system provided direct visual verification of the present simulation, and the simulated results were well consistent with theexperimental observation. The influence of the Rayleigh convection on mass transfer is analyzed qualitatively andquantitatively based on the simulated and the experimental results.展开更多
Absorption of gaseous species into stationary droplets is a fundamental interest of mass transfer between liquid droplets and ambient gas, which plays a key role in atmospheric environment control and many industrial ...Absorption of gaseous species into stationary droplets is a fundamental interest of mass transfer between liquid droplets and ambient gas, which plays a key role in atmospheric environment control and many industrial applications. In this paper, two different considerations including equilibrium and non-equilibrium relations at the interface are used to analyze and predict the absorption time for a physical absorption at a relatively low solubility of gas. For the equilibrium pattern, in the beginning period of absorption, the mass transfer rate is considerably rapid and afterward becomes slower and slower and finally comes to almost zero as the droplet concentration closes to the saturated value. Differently, when the non-equilibrium model is adopted, the interfacial concentration increases gradually with the bulk concentration of liquid droplet, and the absorption rate mildly decelerates with the increase of bulk one throughout the process, which leads to a longer absorption time. Based on the diffusion equation of species, the concentration distribution within the droplet at different times is computed. A solution for CO2 absorption into a small water droplet is given.展开更多
To understand the absorption mechanism of nitrogen dioxide into a sodium sulfide solution, a stirred tank reactor with a plane gas-liquid interface was used to measure the chemical absorption rate of diluted nitrogen ...To understand the absorption mechanism of nitrogen dioxide into a sodium sulfide solution, a stirred tank reactor with a plane gas-liquid interface was used to measure the chemical absorption rate of diluted nitrogen dioxide into sodium sulfide solution. The absorption rates under various experimental conditions were measured and the effects of experimental conditions on nitrogen dioxide absorption rate were discussed. The results show that, in the range of this study, nitrogen dioxide absorption rate increases with increasing sodium sulfide concentration, nitrogen dioxide inlet concentration, and flue gas flow rate, but decreases with increasing reaction temperature and oxygen content in flue gas.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20076032).
文摘Flow and concentration fields of liquid phase in a gas-liquid contacting system are simulated to showthe Rayleigh convection by utilizing the finite-element method. The Schlieren images in CO2-ethanol system provided direct visual verification of the present simulation, and the simulated results were well consistent with theexperimental observation. The influence of the Rayleigh convection on mass transfer is analyzed qualitatively andquantitatively based on the simulated and the experimental results.
基金Supported by the National Natural Science Foundation of China (No. 20176036).
文摘Absorption of gaseous species into stationary droplets is a fundamental interest of mass transfer between liquid droplets and ambient gas, which plays a key role in atmospheric environment control and many industrial applications. In this paper, two different considerations including equilibrium and non-equilibrium relations at the interface are used to analyze and predict the absorption time for a physical absorption at a relatively low solubility of gas. For the equilibrium pattern, in the beginning period of absorption, the mass transfer rate is considerably rapid and afterward becomes slower and slower and finally comes to almost zero as the droplet concentration closes to the saturated value. Differently, when the non-equilibrium model is adopted, the interfacial concentration increases gradually with the bulk concentration of liquid droplet, and the absorption rate mildly decelerates with the increase of bulk one throughout the process, which leads to a longer absorption time. Based on the diffusion equation of species, the concentration distribution within the droplet at different times is computed. A solution for CO2 absorption into a small water droplet is given.
基金supported by the Key Project of the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAA01B04)the Program for New Excellent Talents in University (No. NCET-06-0513), China
文摘To understand the absorption mechanism of nitrogen dioxide into a sodium sulfide solution, a stirred tank reactor with a plane gas-liquid interface was used to measure the chemical absorption rate of diluted nitrogen dioxide into sodium sulfide solution. The absorption rates under various experimental conditions were measured and the effects of experimental conditions on nitrogen dioxide absorption rate were discussed. The results show that, in the range of this study, nitrogen dioxide absorption rate increases with increasing sodium sulfide concentration, nitrogen dioxide inlet concentration, and flue gas flow rate, but decreases with increasing reaction temperature and oxygen content in flue gas.