Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton numbe...Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton number Mo = 3.21 × 10^(-9)and Reynolds numbers Re = 180 ~ 190. The effect of bubble injecting frequency and the distance S between the gas injection nozzle and the wall on the statistical trajectory of bubbles, average velocity distribution of flow field and Reynolds shear stress were studied in detail. It was shown that the combination of bubble injecting frequency and the distance S caused different bubble motion forms and hydrodynamic characteristics.When the normalized initial distance was very little, like S*≈ 1.2(here S*= 2S/d_e, and deis the bubble equivalent diameter), bubbles ascended in a zigzag trajectory with alternant structure of high and low speed flow field around the bubbles, and the distribution of positive and negative Reynolds shear stress looked like a blob. With the increase of distance S*, bubbles' trajectory would tend to be smooth and straight from the zigzag curve. Meanwhile, with the increase of bubble injecting frequency, the camber of bubble trajectory at 20<y<60 mm had a slight increase due to the inhibitory effect from the vertical wall. Under larger spacing, such as S*≈ 3.6, the low-frequency bubbles gradually moved away from the vertical plane wall in a straight trajectory and the high-frequency bubbles gradually moved close to the vertical wall in a similar straight trajectory after an unstable camber motion. Under the circumstances, high-speed fluid was mainly distributed in the region between the wall and the bubbles, while the relative large Reynolds shear stress mainly existed in the region far away from the wall.展开更多
Based on the records of social revolts in the Actual Annals of Qing Dynasty (a collection of official records), the revolts frequency (amount of counties where revolts happened every year) in North China Plain dur...Based on the records of social revolts in the Actual Annals of Qing Dynasty (a collection of official records), the revolts frequency (amount of counties where revolts happened every year) in North China Plain during the Qing Dynasty (1544 1911) is reconstructed. By comparing revolts frequency with temperature and precipitation series, the interaction between climate and social responses is analyzed. It can be concluded that revolts broke out more frequently in colder periods and less frequently in warmer periods, There were much more revolts in drought decades than in wet decades, and the three fatal peasant uprisings in the Qing Dynasty were all ignited by severe droughts. The impacts of changes in temperature and precipitation on revolts should be estimated at different time scales. The correspondence emerged at neither decadal nor yearly scale until the turn between 18th and 19th centuries, the critical period when per capita cropland area decreased to a vulnerable level. Food crisis increased the vulnerability of local society, and changes in temperature and precipitation became an important trigger for revolts.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
Uncertainties in some key parameters in land surface models severely restrict the improvement of model capacity for successful simulation of surface-atmosphere interaction. These key parameters are related to soil moi...Uncertainties in some key parameters in land surface models severely restrict the improvement of model capacity for successful simulation of surface-atmosphere interaction. These key parameters are related to soil moisture and heat transfer and phy- sical processes in the vegetation canopy as well as other important aerodynamic processes. In the present study, measurements of surface-atmosphere interaction at two observation stations that are located in the typical semi-arid region of China, Tongyu Station in Jilin Province and Yuzhong Station in Gansu Province, are combined with the planetary boundary layer theory to estimate the value of two key aerodynamic parameters, i.e., surface roughness length zorn and excess resistance κB-1. Multiple parameterization schemes have been used in the study to obtain values for surface roughness length and excess resistance κB-1 at the two stations. Results indicate that Zorn has distinct seasonal and inter-annual variability. For the type of surface with low-height vegetation, there is a large difference between the default value of Zorn in the land surface model and that obtained from this study, κB-1 demonstrates a significant diurnal variation and seasonal variability. Using the modified scheme for the estimation of Zom and κB-1 in the land surface model, it is found that simulations of sensible heat flux over the semi-arid region have been greatly improved. These results suggest that it is necessary to further evaluate the default values of various parameters used in land surface models based on field measurements. The approach to combine field measurements with atmospheric boundary layer theory to retrieve realistic values for key parameters in land surface models presents a great potential in the improvement of modeling studies of surface-atmosphere interaction.展开更多
基金Supported by the National Natural Science Foundation of China(11572357,11602077)
文摘Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton number Mo = 3.21 × 10^(-9)and Reynolds numbers Re = 180 ~ 190. The effect of bubble injecting frequency and the distance S between the gas injection nozzle and the wall on the statistical trajectory of bubbles, average velocity distribution of flow field and Reynolds shear stress were studied in detail. It was shown that the combination of bubble injecting frequency and the distance S caused different bubble motion forms and hydrodynamic characteristics.When the normalized initial distance was very little, like S*≈ 1.2(here S*= 2S/d_e, and deis the bubble equivalent diameter), bubbles ascended in a zigzag trajectory with alternant structure of high and low speed flow field around the bubbles, and the distribution of positive and negative Reynolds shear stress looked like a blob. With the increase of distance S*, bubbles' trajectory would tend to be smooth and straight from the zigzag curve. Meanwhile, with the increase of bubble injecting frequency, the camber of bubble trajectory at 20<y<60 mm had a slight increase due to the inhibitory effect from the vertical wall. Under larger spacing, such as S*≈ 3.6, the low-frequency bubbles gradually moved away from the vertical plane wall in a straight trajectory and the high-frequency bubbles gradually moved close to the vertical wall in a similar straight trajectory after an unstable camber motion. Under the circumstances, high-speed fluid was mainly distributed in the region between the wall and the bubbles, while the relative large Reynolds shear stress mainly existed in the region far away from the wall.
基金supported by a grant from the National Basic Research Program of China(No 2010CB950103)grants from the National Science Foundation of China(No41071127,No40901099)
文摘Based on the records of social revolts in the Actual Annals of Qing Dynasty (a collection of official records), the revolts frequency (amount of counties where revolts happened every year) in North China Plain during the Qing Dynasty (1544 1911) is reconstructed. By comparing revolts frequency with temperature and precipitation series, the interaction between climate and social responses is analyzed. It can be concluded that revolts broke out more frequently in colder periods and less frequently in warmer periods, There were much more revolts in drought decades than in wet decades, and the three fatal peasant uprisings in the Qing Dynasty were all ignited by severe droughts. The impacts of changes in temperature and precipitation on revolts should be estimated at different time scales. The correspondence emerged at neither decadal nor yearly scale until the turn between 18th and 19th centuries, the critical period when per capita cropland area decreased to a vulnerable level. Food crisis increased the vulnerability of local society, and changes in temperature and precipitation became an important trigger for revolts.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.
基金supported by the National Basic Research Program of China(Grant No.2011CB952002)the National Natural Science Foundation of China(Grant Nos.41475063+1 种基金41005047)Program for New Century Excellent Talents in University,and the Jiangsu Collaborative Innovation Center for Climate Change
文摘Uncertainties in some key parameters in land surface models severely restrict the improvement of model capacity for successful simulation of surface-atmosphere interaction. These key parameters are related to soil moisture and heat transfer and phy- sical processes in the vegetation canopy as well as other important aerodynamic processes. In the present study, measurements of surface-atmosphere interaction at two observation stations that are located in the typical semi-arid region of China, Tongyu Station in Jilin Province and Yuzhong Station in Gansu Province, are combined with the planetary boundary layer theory to estimate the value of two key aerodynamic parameters, i.e., surface roughness length zorn and excess resistance κB-1. Multiple parameterization schemes have been used in the study to obtain values for surface roughness length and excess resistance κB-1 at the two stations. Results indicate that Zorn has distinct seasonal and inter-annual variability. For the type of surface with low-height vegetation, there is a large difference between the default value of Zorn in the land surface model and that obtained from this study, κB-1 demonstrates a significant diurnal variation and seasonal variability. Using the modified scheme for the estimation of Zom and κB-1 in the land surface model, it is found that simulations of sensible heat flux over the semi-arid region have been greatly improved. These results suggest that it is necessary to further evaluate the default values of various parameters used in land surface models based on field measurements. The approach to combine field measurements with atmospheric boundary layer theory to retrieve realistic values for key parameters in land surface models presents a great potential in the improvement of modeling studies of surface-atmosphere interaction.