Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of recept...Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 20671077), the Key Scientific and Technical Research Project of Ministry of Education of China (No. 205161), the Youth Foundation of Gansu Province (No. 3YS051-A25-010), the Natural Science Foundation of Gansu Province in China (No. 3ZS061-A25-027) and the Scientific Research Fund of Education Department of Gansu Province (No. 0601-24).
文摘Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.