The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts...The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.展开更多
The Ni−25%X(X=Fe,Co,Cu,molar fraction)solid solutions were prepared and then doped into MgH_(2) through high-energy ball milling.The initial dehydrogenation temperatures of MgH_(2)/Ni−25%X composites are all decreased...The Ni−25%X(X=Fe,Co,Cu,molar fraction)solid solutions were prepared and then doped into MgH_(2) through high-energy ball milling.The initial dehydrogenation temperatures of MgH_(2)/Ni−25%X composites are all decreased by about 90℃relative to the as-milled pristine MgH_(2).The Ni−25%Co solid solution exhibits the most excellent catalytic effect,and the milled MgH_(2)/Ni−25%Co composite can release 5.19 wt.%hydrogen within 10 min at 300℃,while the as-milled pristine MgH_(2) can only release 1.78 wt.%hydrogen.More importantly,the dehydrogenated MgH_(2)/Ni−25%Co composite can absorb 5.39 wt.%hydrogen at 275℃within 3 min.The superior hydrogen sorption kinetics of MgH_(2)/Ni−25%Co can be ascribed to the actual catalytic effect of in-situ formed Mg_(2)Ni(Co)compounds.First-principles calculations show that the hydrogen absorption/desorption energy barriers of Mg/MgH_(2) systems decrease significantly after doping with transition metal atoms,which interprets well the improved hydrogen sorption properties of MgH_(2) catalyzed by Ni-based solid solutions.展开更多
文摘The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.
基金the National Natural Science Foundation of China(Nos.51874049,51904036)the Science Research Project of Hunan Province Office of Education,China(No.20A024)+2 种基金the Changsha Science and Technology Program Project(No.kq1907092)the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2019CL03)the Research and Innovation Project of Graduate Students in Changsha University of Science and Technology,China(No.CX2020SS35).
文摘The Ni−25%X(X=Fe,Co,Cu,molar fraction)solid solutions were prepared and then doped into MgH_(2) through high-energy ball milling.The initial dehydrogenation temperatures of MgH_(2)/Ni−25%X composites are all decreased by about 90℃relative to the as-milled pristine MgH_(2).The Ni−25%Co solid solution exhibits the most excellent catalytic effect,and the milled MgH_(2)/Ni−25%Co composite can release 5.19 wt.%hydrogen within 10 min at 300℃,while the as-milled pristine MgH_(2) can only release 1.78 wt.%hydrogen.More importantly,the dehydrogenated MgH_(2)/Ni−25%Co composite can absorb 5.39 wt.%hydrogen at 275℃within 3 min.The superior hydrogen sorption kinetics of MgH_(2)/Ni−25%Co can be ascribed to the actual catalytic effect of in-situ formed Mg_(2)Ni(Co)compounds.First-principles calculations show that the hydrogen absorption/desorption energy barriers of Mg/MgH_(2) systems decrease significantly after doping with transition metal atoms,which interprets well the improved hydrogen sorption properties of MgH_(2) catalyzed by Ni-based solid solutions.