The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 ...The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 °C were systematically investigated.The dissolution property of high-ferrite gibbsitic bauxite is increased by increasing the dissolution temperature and the Na OH concentration or decreasing the particle size of bauxite,which is easy to dissolve under atmospheric pressure.The kinetic equations of gibbsitic bauxites with different ferrite contents during the dissolution process at different temperatures for different times were established,and the corresponding activation energies were calculated.The ferrite in the gibbsitic bauxite reduces the dissolution speed and increases the activation energy of dissolution,the diffusion process of which is the rate-controlling step.展开更多
A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determini...A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.展开更多
This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three c...This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.展开更多
Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from...Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .展开更多
Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this cata...Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm2 and H2 evolution rate of 240 μmol·cm-2·h-1 at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.展开更多
基金Projects(51104041,51174054,51374065)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central Universities of China
文摘The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 °C were systematically investigated.The dissolution property of high-ferrite gibbsitic bauxite is increased by increasing the dissolution temperature and the Na OH concentration or decreasing the particle size of bauxite,which is easy to dissolve under atmospheric pressure.The kinetic equations of gibbsitic bauxites with different ferrite contents during the dissolution process at different temperatures for different times were established,and the corresponding activation energies were calculated.The ferrite in the gibbsitic bauxite reduces the dissolution speed and increases the activation energy of dissolution,the diffusion process of which is the rate-controlling step.
基金the State Key Development Program for Basic Research of China (No. G2000048005) the SINOPEC (No.X503023).
文摘A periodic packing mode of trickle-bed reactor (TBR) for the gas limited reaction was proposed. Hy-drogenation of 2-ethylanthraquinone over Pd/Al2O3 in a laboratory-scale TBR was taken as a test reaction for determining whether the periodic packing mode is advantageous. The effects of operating conditions and packing type on TBR performance were experimentally examined to demonstrate the cause-effect relationships. A mathe-matic model of TBR considering axial dispersion and fractional wetting was developed to quantitatively illuminate the reason of performance enhancement.
基金Supported by the Natural Science Foundation of Shandong Province of China (ZR2009BM011) the Doctor Foundation of Shandong Province of China (BS2010NJ005)
文摘This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.
基金Project supported by the One Hundred Talents Program of Chinese Academy of Sciences
文摘Chemical vapor deposition(CVD) of SiC from methyltrichlorosilane(MTS) was studied at two different molar ratios of H2 to MTS(n(H2) /n(MTS) ) . The total pressure was kept as 100 kPa and the temperature was varied from 850 to 1 100 ℃ at a total residence time of 1 s. Steady-state deposition rates as functions of reactor length and of temperature,investigated at different n(H2) /n(MTS) values,show that hydrogen exhibits strongly influences on the deposition rate. Especially,the deposition of Si co-deposit can be obtained in broader substrate length and at higher temperatures with increasing hydrogen partial pressure. Influence of hydrogen on the deposition process was also studied using gas phase composition and deposit composition analysis at various n(H2) /n(MTS) . SEM micrographs directly show the variation of surface morphologies at various n(H2) /n(MTS) . It can be found that the crystal grain of the deposit at 1 100 ℃ is better developed and the crystallization is also improved with increasing n(H2) /n(MTS) .
基金supported by the National Natural Science Foundation of China(No.U1632273,No.21673214,No.U1732272,and No.U1832165)
文摘Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H2 evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm2 and H2 evolution rate of 240 μmol·cm-2·h-1 at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.