Molecular catalysts for H2-evolution are of interest for their integration into light-harvesting complexes for photocatalytic water splitting.Here,we report the meso-tetra(4-carboxyphenyl)porphine[(TCPP)Pt^(Ⅱ)]comple...Molecular catalysts for H2-evolution are of interest for their integration into light-harvesting complexes for photocatalytic water splitting.Here,we report the meso-tetra(4-carboxyphenyl)porphine[(TCPP)Pt^(Ⅱ)]complex as a molecular H2-evolving photocatalyst using chloranilic acid(CA)as a sacrificial electron donor,the choice of which is critical to the stability of the photocatalyst.When triethanolamine was used,[(TCPP)Pt^(Ⅱ)]decomposed to form Pt nanoparticles.Density functional theory calculations together with evidence from electrochemical and spectroscopic analyses suggested that the catalysis was possibly initiated by a proton-coupled electron transfer(PCET)to form[(TCPP)Pt^(Ⅰ)]-N-H,followed by another electron injection and protonation to form a[(TCPP)Pt^(Ⅱ)-hydride]-N-H intermediate that can release H2.As the whole catalytic cycle involves the injection of multiple electrons,a light-harvesting network should be helpful by providing multiple photo-induced electrons.Thus,we integrated this molecular catalyst into a light-harvesting metal-organic framework to boost its activity by~830 times.This work presents a mechanistic study of the photocatalytic H2 evolution and energy transfer and highlights the importance of a light-harvesting network for multiple electron injections.展开更多
Halogen bonding interactions between several halogenated ion pairs and CO2 molecules have been investigated by means of density functional theory calculations. To account for the influence of solvent environment, the ...Halogen bonding interactions between several halogenated ion pairs and CO2 molecules have been investigated by means of density functional theory calculations. To account for the influence of solvent environment, the implicit polarized continuum model was also employed. The bromide and iodide cations of ionic liquids (ILs) under study can interact with CO2 molecules via X O interactions, which become much stronger in strength than those in the complexes of iodo-perfluorobenzenes, very effective halogen bond donors, with CO2 molecules. Such interactions, albeit somewhat weaker in strength, are also observed between halogenated ion pairs and CO2 molecules. Thus, the solubility of CO2 may be improved when using halogenated ILs, as a result of the formation of X O halogen bonds. Under solvent effects, the strength of the interactions tends to be weakened to some degree, with a concomitant elongation of intermolecular distances. The results presented here would be very useful in the design and synthesis of novel and potent ILs for CO2 physical absorption.展开更多
文摘Molecular catalysts for H2-evolution are of interest for their integration into light-harvesting complexes for photocatalytic water splitting.Here,we report the meso-tetra(4-carboxyphenyl)porphine[(TCPP)Pt^(Ⅱ)]complex as a molecular H2-evolving photocatalyst using chloranilic acid(CA)as a sacrificial electron donor,the choice of which is critical to the stability of the photocatalyst.When triethanolamine was used,[(TCPP)Pt^(Ⅱ)]decomposed to form Pt nanoparticles.Density functional theory calculations together with evidence from electrochemical and spectroscopic analyses suggested that the catalysis was possibly initiated by a proton-coupled electron transfer(PCET)to form[(TCPP)Pt^(Ⅰ)]-N-H,followed by another electron injection and protonation to form a[(TCPP)Pt^(Ⅱ)-hydride]-N-H intermediate that can release H2.As the whole catalytic cycle involves the injection of multiple electrons,a light-harvesting network should be helpful by providing multiple photo-induced electrons.Thus,we integrated this molecular catalyst into a light-harvesting metal-organic framework to boost its activity by~830 times.This work presents a mechanistic study of the photocatalytic H2 evolution and energy transfer and highlights the importance of a light-harvesting network for multiple electron injections.
基金supported by the National Basic Research Program of China (2009CB219902)the Natural Science Foundation of Shanghai (11ZR1408700)the National Natural Science Foundation of China (21136004 and 21103047)
文摘Halogen bonding interactions between several halogenated ion pairs and CO2 molecules have been investigated by means of density functional theory calculations. To account for the influence of solvent environment, the implicit polarized continuum model was also employed. The bromide and iodide cations of ionic liquids (ILs) under study can interact with CO2 molecules via X O interactions, which become much stronger in strength than those in the complexes of iodo-perfluorobenzenes, very effective halogen bond donors, with CO2 molecules. Such interactions, albeit somewhat weaker in strength, are also observed between halogenated ion pairs and CO2 molecules. Thus, the solubility of CO2 may be improved when using halogenated ILs, as a result of the formation of X O halogen bonds. Under solvent effects, the strength of the interactions tends to be weakened to some degree, with a concomitant elongation of intermolecular distances. The results presented here would be very useful in the design and synthesis of novel and potent ILs for CO2 physical absorption.