Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated a...Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops. In this study, plant physiology, soil carbon, and soil enzyme activities were measured to investigate the impacts of elevated C02 and drought stress on a Stagn[c Anthrosol planted with soybean (Glycine ma,z). Treatments of two CO2 levels, three soil moisture levels, and two soil cover types were established. The results indicated that elevated CO2 and drought stress significantly affected plant physiology. The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions. Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil, probably by improving the soil water effectiveness for organic decomposition and mineralization. Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC), but the interactive effects of drought stress and CO2 on them were not significant. Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation. These results suggested that drought stress had significant negative impacts on plant physiology, soil carbon, and soil enzyme activities, whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts.展开更多
基金China Postdoctoral Science Foundation(Grant 2016T90924)The Fundamental Research Funds for the Central Universities(Grant xjj2015046)+1 种基金the National Natural Science Foundation of China under Grant 21506169the China Postdoctoral Science Foundation under Grant 2015M582666
基金supported by the National Natural Science Foundation of China (No.51309053)the Fundamental Research Funds for the Central Universities-Donghua University (DHU) Distinguished Young Professor Program, China (No.B201310)
文摘Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops. In this study, plant physiology, soil carbon, and soil enzyme activities were measured to investigate the impacts of elevated C02 and drought stress on a Stagn[c Anthrosol planted with soybean (Glycine ma,z). Treatments of two CO2 levels, three soil moisture levels, and two soil cover types were established. The results indicated that elevated CO2 and drought stress significantly affected plant physiology. The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions. Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil, probably by improving the soil water effectiveness for organic decomposition and mineralization. Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC), but the interactive effects of drought stress and CO2 on them were not significant. Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation. These results suggested that drought stress had significant negative impacts on plant physiology, soil carbon, and soil enzyme activities, whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts.