The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of so...The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium aluminates, TMAOH (tetramethylammonium hydroxide), and CTMAB (cetyltrimethylammonium bromide), in Aquadest as a solvent. This process was carried out within 12 h of aging time at 100 ℃ in a teflon-lined stainless steel autoclave. The solid phase was filtered, then washed with distilled water, and dried in an oven at 80 ℃ for 24 h. The surfactant CTMAB was removed by calcination at 540 ℃ for 6 h using heating rate of 2 ℃/min. The as-synthesized and calcined powder was characterized by using FTIR (frontier transform infra red spectroscopy), XRD (X-ray diffraction), and TEM (transmission electron microscopy) methods. The product of AIMCM-41 was then converted into H-AIMCM-41 by ion exchanged in 0.5 M of NHaCI solution followed by filtration, drying at 80 ℃ for 24 h, and calcination at 540 ℃. The product of catalyst was used for catalytic conversion of PO (palm oil) to biogasoline in a fixed bed reactor at 200-400 ℃, under atmospheric pressure, and ratio of PO to catalyst was 200. The product of cracking was then distilled at 60 ℃ and analyzed using GC-MS (gas liquid chromatography - mass spectrometry) method. Result of the works shows that the catalyst had 4.49 nm of lattice parameter, and the cracking of PO gave 56.6% conversions with 29.4% selectivity to biogasoline like fraction.展开更多
Silicon bulk etching is an important part of micro-electro-mechanical system(MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide(TMAH) solution heat...Silicon bulk etching is an important part of micro-electro-mechanical system(MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide(TMAH) solution heated up to boiling point. The monocrystalline silicon wafer is positioned over the solution surface and can be anisotropically etched by the produced vapor. This etching method does not rely on the expensive vacuum equipment used in dry etching. Meanwhile, it presents several advantages like low roughness, high etching rate and high uniformity compared with the conventional wet etching methods. The etching rate and roughness can reach 2.13 μm/min and 1.02 nm, respectively. Furthermore,the diaphragm structure and Al-based pattern on the non-etched side of wafer can maintain intact without any damage during the back-cavity fabrication. Finally, an etching mechanism has been proposed to illustrate the observed experimental phenomenon. It is suggested that there is a water thin film on the etched surface during the solution evaporation. It is in this water layer that the ionization and etching reaction of TMAH proceed, facilitating the desorption of hydrogen bubble and the enhancement of molecular exchange rate. This new etching method is of great significance in the low-cost and high-quality micro-electromechanical system industrial fabrication.展开更多
The matrix polymer PTBCHNB bearing o-nitrobenzyl group was successfully synthesized by copolymerization of tertiary-butyl methacrylate(TBMA), cyclohexyl methacrylate(CHMA) and o-nitrobenzyl methacrylate(NBMA) via reve...The matrix polymer PTBCHNB bearing o-nitrobenzyl group was successfully synthesized by copolymerization of tertiary-butyl methacrylate(TBMA), cyclohexyl methacrylate(CHMA) and o-nitrobenzyl methacrylate(NBMA) via reversible addition fragmentation chain transfer(RAFT) polymerization method. PTBCHNB was characterized by FTIR, 1HNMR, GPC and DSC. After UV irradiation, the o-nitrobenzyl groups of PTBCHNB were photocleaved and the resulting carboxyl groups were highly alkali soluble, and PTBCHNB was converted to PCHIBMA bearing carboxyl groups. So, the matrix polymer could be etched by mild alkali solution with no requirements of photoacid generators and other diverse additives. The photocleavable behaviors of PTBCHNB were determined by FTIR, 1H NMR and TGA analysis. The resist formulated with PTBCHNB and cast in THF solution showed square pattern of 10 μm×10 μm using a mercury-xenon lamp in a contact printing mode and tetramethyl-ammonium hydroxide aqueous solution as a developer.展开更多
文摘The objective of this research was to develop a catalyst for efficient cracking of palm oil to produce biogasoline. Mesoporous alumino-silicate, A1MCM-41, was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium aluminates, TMAOH (tetramethylammonium hydroxide), and CTMAB (cetyltrimethylammonium bromide), in Aquadest as a solvent. This process was carried out within 12 h of aging time at 100 ℃ in a teflon-lined stainless steel autoclave. The solid phase was filtered, then washed with distilled water, and dried in an oven at 80 ℃ for 24 h. The surfactant CTMAB was removed by calcination at 540 ℃ for 6 h using heating rate of 2 ℃/min. The as-synthesized and calcined powder was characterized by using FTIR (frontier transform infra red spectroscopy), XRD (X-ray diffraction), and TEM (transmission electron microscopy) methods. The product of AIMCM-41 was then converted into H-AIMCM-41 by ion exchanged in 0.5 M of NHaCI solution followed by filtration, drying at 80 ℃ for 24 h, and calcination at 540 ℃. The product of catalyst was used for catalytic conversion of PO (palm oil) to biogasoline in a fixed bed reactor at 200-400 ℃, under atmospheric pressure, and ratio of PO to catalyst was 200. The product of cracking was then distilled at 60 ℃ and analyzed using GC-MS (gas liquid chromatography - mass spectrometry) method. Result of the works shows that the catalyst had 4.49 nm of lattice parameter, and the cracking of PO gave 56.6% conversions with 29.4% selectivity to biogasoline like fraction.
基金supported by the National Natu-ral Science Foundation of China(No.51675493 and No.51975542)the National Key R&D Program of China(No.2018YFF0300605,No.2019YFF0301802,and No.2019YFB2004802)Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi and Shanxi"1331 Project"Key Subject Construction(1331KSC).
文摘Silicon bulk etching is an important part of micro-electro-mechanical system(MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide(TMAH) solution heated up to boiling point. The monocrystalline silicon wafer is positioned over the solution surface and can be anisotropically etched by the produced vapor. This etching method does not rely on the expensive vacuum equipment used in dry etching. Meanwhile, it presents several advantages like low roughness, high etching rate and high uniformity compared with the conventional wet etching methods. The etching rate and roughness can reach 2.13 μm/min and 1.02 nm, respectively. Furthermore,the diaphragm structure and Al-based pattern on the non-etched side of wafer can maintain intact without any damage during the back-cavity fabrication. Finally, an etching mechanism has been proposed to illustrate the observed experimental phenomenon. It is suggested that there is a water thin film on the etched surface during the solution evaporation. It is in this water layer that the ionization and etching reaction of TMAH proceed, facilitating the desorption of hydrogen bubble and the enhancement of molecular exchange rate. This new etching method is of great significance in the low-cost and high-quality micro-electromechanical system industrial fabrication.
基金Project(2008AA03323) supported by the High-Tech Research and Development of ChinaProject(21374016) supported by the National Natural Science Foundation of ChinaProject(BY201153) supported by Production,Forward-Looking Joint Research Project of Jiangsu Province,China
文摘The matrix polymer PTBCHNB bearing o-nitrobenzyl group was successfully synthesized by copolymerization of tertiary-butyl methacrylate(TBMA), cyclohexyl methacrylate(CHMA) and o-nitrobenzyl methacrylate(NBMA) via reversible addition fragmentation chain transfer(RAFT) polymerization method. PTBCHNB was characterized by FTIR, 1HNMR, GPC and DSC. After UV irradiation, the o-nitrobenzyl groups of PTBCHNB were photocleaved and the resulting carboxyl groups were highly alkali soluble, and PTBCHNB was converted to PCHIBMA bearing carboxyl groups. So, the matrix polymer could be etched by mild alkali solution with no requirements of photoacid generators and other diverse additives. The photocleavable behaviors of PTBCHNB were determined by FTIR, 1H NMR and TGA analysis. The resist formulated with PTBCHNB and cast in THF solution showed square pattern of 10 μm×10 μm using a mercury-xenon lamp in a contact printing mode and tetramethyl-ammonium hydroxide aqueous solution as a developer.