The unit for manufacture of MTBE with co-production ofbutene-1 was successfully put on stream at Guangzhou Pet-rochemical Complex (GPC).It is told that this is the firstdomestic unit that utilizes the refinery C4 frac...The unit for manufacture of MTBE with co-production ofbutene-1 was successfully put on stream at Guangzhou Pet-rochemical Complex (GPC).It is told that this is the firstdomestic unit that utilizes the refinery C4 fraction to makeMTBE and butene-1.The existing 40 kt/a MTBE was retrofitted into the unit formanufacture of MTBE with co-production of butene-1,which can produce 54.4 kt/a MTBE and 18.2 kt/a展开更多
Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen p...Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.展开更多
Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocataly...Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production.展开更多
The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at diffe...The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.展开更多
This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization...This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.展开更多
Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxyge...Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2).展开更多
文摘The unit for manufacture of MTBE with co-production ofbutene-1 was successfully put on stream at Guangzhou Pet-rochemical Complex (GPC).It is told that this is the firstdomestic unit that utilizes the refinery C4 fraction to makeMTBE and butene-1.The existing 40 kt/a MTBE was retrofitted into the unit formanufacture of MTBE with co-production of butene-1,which can produce 54.4 kt/a MTBE and 18.2 kt/a
基金supported by the JSPS KAKENHI(16H02268)from MEXTJapan and by the CRI(2012R1A3A2048842)Basic Science Research Program(NRF-2020R1I1A1A01074630)through NRF of Korea.
文摘Hydrogen peroxide has attracted increasing interest as an environmentally benign and green oxidant that can also be used as a solar fuel in fuel cells.This review focuses on recent progress in production of hydrogen peroxide by solar-light-driven oxidation of water by dioxygen and its usage as a green oxidant and fuel.The photocatalytic production of hydrogen peroxide is made possible by combining the e^(-)and 4e-oxidation of water with the e^(-)reduction of dioxygen using solar energy.The catalytic control of the selectivity of the e^(-)vs.4e-oxidation of water is discussed together with the selectivity of the e^(-)vs.4e-reduction of dioxygen.The combination of the photocatalytic e^(-)oxidation of water and the e^(-)reduction of dioxygen provides the best efficiency because both processes afford hydrogen peroxide.The solar-light-driven hydrogen peroxide production by oxidation of water and by reduction of dioxygen is combined with the catalytic oxidation of substrates with hydrogen peroxides,in which dioxygen is used as the greenest oxidant.
文摘Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production.
文摘The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.
基金Supported by the Excellent Young Scientist Award of NSFC (20225620) the National Natural Science Foundation of China (No. 20376025) the Ministry of Education of China, the Bureau of Education of Guangdong Province.
文摘This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.
文摘Photocatalytic hydrogen peroxide(H_(2)O_(2))production is a promising strategy to replace the traditional production processes;however,the inefficient H_(2)O_(2) productivity limits its application.In this study,oxygen-rich g-C_(3)N_(4) with abundant nitrogen vacancies(OCN)was synthesized for photocatalytic H_(2)O_(2) production.X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that oxygen-containing functional groups(–COOH and C–O–C)were obtained.Electron paramagnetic resonance confirmed the successful introduction of nitrogen vacancies.OCN exhibited efficient photocatalytic H_(2)O_(2) production performance of 1965μmol L^(−1) h^(−1) in air under visible-light irradiation.The high H_(2)O_(2) production was attributed to the enhanced adsorption of oxygen,enlarged specific surface area,and promoted carrier separation.An increased H_(2)O_(2) production rate(5781μmol L^(−1) h^(−1))was achieved in a Na_(3)PO_(4) solution.The improved performance was attributed to the changed reactive oxygen species.Specifically,the adsorbed PO_(4)^(3−) on the surface of the OCN promoted the transfer of holes to the catalyst surface.•O_(2)−obtained by O_(2) reduction reacted with adjacent holes to generate 1O_(2),which could efficiently generate H_(2)O_(2) with isopropanol.Additionally,PO_(4)^(3−),as a stabilizer,inhibited the decomposition of H_(2)O_(2).