Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
In contrast to the exploration of novel photocatalytic materials,vacancy engineering of traditionalphotocatalysts comprising earth‐abundant elements represents an effective method for enhancingphotocatalytic performa...In contrast to the exploration of novel photocatalytic materials,vacancy engineering of traditionalphotocatalysts comprising earth‐abundant elements represents an effective method for enhancingphotocatalytic performance without introducing alien elements.This minireview analyzes the latestprogress in engineering vacancies in photocatalysts,remarks on state‐of‐the‐art characterizationtechniques for vacancies,and reviews the formation chemistry and fundamental benefits of anionand cation vacancies in typical photocatalysts.Although knowledge of these vacancies is increasing,challenges remain in this field,and possible further research is therefore also discussed.展开更多
Single atom catalysts have recently attracted interest due to their maximization of the utilization of expensive noble metals as well as their unique catalytic properties. Based on its surface atomic properties, CeO2 ...Single atom catalysts have recently attracted interest due to their maximization of the utilization of expensive noble metals as well as their unique catalytic properties. Based on its surface atomic properties, CeO2 is one of the most common supports for stabilizing single metal atoms. Many single atom catalysts are limited in their metal contents by the formation of metal nanoparticles once the catalyst support capacity for single atoms has been exceeded. Currently, there are no direct measurements to determine the capacity of a support to stabilize single atoms. In this work we develop a nanoparticle-based technique that allows for quantification of that capacity by redispersing Ru nanoparticles into single atoms and taking advantage of the different catalytic properties of Ru single atoms and nanoparticles in the CO2 hydrogenation reaction. This method avoids complications in metal loading caused by counterions in incipient wetness impregnation and can eventually be applied to a variety of different metals. Results using this technique follow trends in oxygen vacancy concentration and surface oxygen content and show promise as a new method for quantifying support single atom stabilization capacity.展开更多
The exploration of efficient and earth‐rich electrocatalysts for electrochemical reactions is critical to the implementation of large‐scale green energy conversion and storage techniques.Two‐dimensional(2D)material...The exploration of efficient and earth‐rich electrocatalysts for electrochemical reactions is critical to the implementation of large‐scale green energy conversion and storage techniques.Two‐dimensional(2D)materials with distinctive structural and electrochemical properties provide fertile soil for researchers to harvest basic science and emerging applications,which can be divided into metal‐free materials(such as graphene,carbon nitride and black phosphorus)and transition metal‐based materials(such as halogenides,phosphates,oxides,hydroxides,and MXenes).For faultless 2D materials,they usually exhibit poor electrochemical hydrogen evolution reaction(HER)activity because only edge sites can be available while the base surface is chemically inactive.Defect engineering is an effective strategy to generate active sites in 2D materials for improving electrocatalytic activity.This review presents feasible design strategies for constructing defect sites(including edge defects,vacancy defects and dopant derived defects)in 2D materials to improve their HER performance.The essential relationships between defect structures and electrocatalytic HER performance are discussed in detail,providing valuable guidance for rationally fabricating efficient HER electrocatalysts.The hydrogen adsorption/desorption energy can be optimized by constructing defect sites at different locations and by adjusting the local electronic structure to form unsaturated coordination states for efficient HER.展开更多
Praseodymium can modify the properties of ceria (CeO2), changing the electronic structure, reducibility and catalytic behavior. Oxygen vacancies in the ceria-based samples can activate C–O and C–H bonds of small mol...Praseodymium can modify the properties of ceria (CeO2), changing the electronic structure, reducibility and catalytic behavior. Oxygen vacancies in the ceria-based samples can activate C–O and C–H bonds of small molecules such as CO2 and propane. Partially reduced Pr/CeO2-x can selectively activate C–H of propane, giving a propylene selectivity of ca. 75% at a propane conversion of 5% to 10%. Excess reduction of Pr/CeO2-x induces coking reactions during propane dehydrogenation, resulting in fast catalyst deactivation.展开更多
Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, wit...Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, with color from white to black. The bandgap of the resultant rutile TiO2 is reduced from 3.0 to 2.56 e V, indicating the enhanced visible light absorption. The resultant rutile TiO2 with optimal contents of VO(2.07%) exhibits a high solar-driven photocatalytic hydrogen production rate of 734 μmol h-1, which is about four times as high as that of the pristine one(185 μmol h-1). The presence of VOelevates the apparent Fermi level of rutile TiO2 and promotes the efficient electronhole separation obviously, which favor the escape of photogenerated electrons and prolong the life-time(7.6×103 ns) of photogenerated charge carriers, confirmed by scanning Kelvin probe microscopy, surface photovoltage spectroscopy and transient-state fluorescence. VO-mediated efficient photogenerated electron-hole separation strategy may provide new insight for fabricating other high-performance semiconductor oxide photocatalysts.展开更多
Seeking catalysts with high electrocatalytic activity for ambient-condition N2 reduction reaction (NRR) remains an ongoing challenge due to the chemical inertness of N2.Herein,defect-rich WS2 nanosheets (WS2-x) were d...Seeking catalysts with high electrocatalytic activity for ambient-condition N2 reduction reaction (NRR) remains an ongoing challenge due to the chemical inertness of N2.Herein,defect-rich WS2 nanosheets (WS2-x) were designed as an efficient electrocatalyst for NRR,which were prepared via vulcanizing the oxygen-vacancy-rich tungsten oxide in a vacuum tube.The sulfur defects were conducive to the adsorption and activation of N2.In neutral electrolyte of 0.1 mol L^(-1)Na2SO_(4) at-0.60 V vs.reversible hydrogen electrode,such WS2-xoffered a high Faradaic efficiency of 12.1%with a NH3generation rate of 16.38μg h-1mg-1cat..展开更多
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
基金supported by the National Natural Science Foundation of China (21377084)Special Fund for Agro-scientific Research in the Public Interest (201503107)~~
文摘In contrast to the exploration of novel photocatalytic materials,vacancy engineering of traditionalphotocatalysts comprising earth‐abundant elements represents an effective method for enhancingphotocatalytic performance without introducing alien elements.This minireview analyzes the latestprogress in engineering vacancies in photocatalysts,remarks on state‐of‐the‐art characterizationtechniques for vacancies,and reviews the formation chemistry and fundamental benefits of anionand cation vacancies in typical photocatalysts.Although knowledge of these vacancies is increasing,challenges remain in this field,and possible further research is therefore also discussed.
基金support from the Stanford Precourt Institute for Energysupport from the School of Engineering at Stanford University+3 种基金a Terman Faculty Fellowshipsupport from a Stanford Graduate Fellowship(SGF)an EDGE fellowshipsupported by the National Science Foundation under award ECCS-1542152。
文摘Single atom catalysts have recently attracted interest due to their maximization of the utilization of expensive noble metals as well as their unique catalytic properties. Based on its surface atomic properties, CeO2 is one of the most common supports for stabilizing single metal atoms. Many single atom catalysts are limited in their metal contents by the formation of metal nanoparticles once the catalyst support capacity for single atoms has been exceeded. Currently, there are no direct measurements to determine the capacity of a support to stabilize single atoms. In this work we develop a nanoparticle-based technique that allows for quantification of that capacity by redispersing Ru nanoparticles into single atoms and taking advantage of the different catalytic properties of Ru single atoms and nanoparticles in the CO2 hydrogenation reaction. This method avoids complications in metal loading caused by counterions in incipient wetness impregnation and can eventually be applied to a variety of different metals. Results using this technique follow trends in oxygen vacancy concentration and surface oxygen content and show promise as a new method for quantifying support single atom stabilization capacity.
文摘The exploration of efficient and earth‐rich electrocatalysts for electrochemical reactions is critical to the implementation of large‐scale green energy conversion and storage techniques.Two‐dimensional(2D)materials with distinctive structural and electrochemical properties provide fertile soil for researchers to harvest basic science and emerging applications,which can be divided into metal‐free materials(such as graphene,carbon nitride and black phosphorus)and transition metal‐based materials(such as halogenides,phosphates,oxides,hydroxides,and MXenes).For faultless 2D materials,they usually exhibit poor electrochemical hydrogen evolution reaction(HER)activity because only edge sites can be available while the base surface is chemically inactive.Defect engineering is an effective strategy to generate active sites in 2D materials for improving electrocatalytic activity.This review presents feasible design strategies for constructing defect sites(including edge defects,vacancy defects and dopant derived defects)in 2D materials to improve their HER performance.The essential relationships between defect structures and electrocatalytic HER performance are discussed in detail,providing valuable guidance for rationally fabricating efficient HER electrocatalysts.The hydrogen adsorption/desorption energy can be optimized by constructing defect sites at different locations and by adjusting the local electronic structure to form unsaturated coordination states for efficient HER.
文摘Praseodymium can modify the properties of ceria (CeO2), changing the electronic structure, reducibility and catalytic behavior. Oxygen vacancies in the ceria-based samples can activate C–O and C–H bonds of small molecules such as CO2 and propane. Partially reduced Pr/CeO2-x can selectively activate C–H of propane, giving a propylene selectivity of ca. 75% at a propane conversion of 5% to 10%. Excess reduction of Pr/CeO2-x induces coking reactions during propane dehydrogenation, resulting in fast catalyst deactivation.
基金supported by the Key Program Projects of the National Natural Science Foundation of China (21631004)the National Natural Science Foundation of China (51672073)
文摘Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, with color from white to black. The bandgap of the resultant rutile TiO2 is reduced from 3.0 to 2.56 e V, indicating the enhanced visible light absorption. The resultant rutile TiO2 with optimal contents of VO(2.07%) exhibits a high solar-driven photocatalytic hydrogen production rate of 734 μmol h-1, which is about four times as high as that of the pristine one(185 μmol h-1). The presence of VOelevates the apparent Fermi level of rutile TiO2 and promotes the efficient electronhole separation obviously, which favor the escape of photogenerated electrons and prolong the life-time(7.6×103 ns) of photogenerated charge carriers, confirmed by scanning Kelvin probe microscopy, surface photovoltage spectroscopy and transient-state fluorescence. VO-mediated efficient photogenerated electron-hole separation strategy may provide new insight for fabricating other high-performance semiconductor oxide photocatalysts.
基金supported by the National Natural Science Foundation of China (21874079)the Natural Science Foundation for Outstanding Young Scientists of Shandong Province (ZR2018JL011)+3 种基金the Key R&D Project of Shandong Province (GG201809230180)Taishan Scholars Program of Shandong Province (tsqn201909088)the Outstanding Youth Innovation Team of Universities in Shandong Province (2019KJA027)the Science & Technology Fund Planning Project of Shandong Colleges and Universities (J16LA13 and J18KA112)。
文摘Seeking catalysts with high electrocatalytic activity for ambient-condition N2 reduction reaction (NRR) remains an ongoing challenge due to the chemical inertness of N2.Herein,defect-rich WS2 nanosheets (WS2-x) were designed as an efficient electrocatalyst for NRR,which were prepared via vulcanizing the oxygen-vacancy-rich tungsten oxide in a vacuum tube.The sulfur defects were conducive to the adsorption and activation of N2.In neutral electrolyte of 0.1 mol L^(-1)Na2SO_(4) at-0.60 V vs.reversible hydrogen electrode,such WS2-xoffered a high Faradaic efficiency of 12.1%with a NH3generation rate of 16.38μg h-1mg-1cat..