The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determin...The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.展开更多
The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenati...The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenation of carboxylic acids using earth‐abundant cobalt oxides through a reaction‐controlled catalysis process.The further reaction of the alcohols is completely hindered by the presence of carboxylic acids in the reaction system.The partial reduction of cobalt oxides by hydrogen at designated temperatures can dramatically enhance the catalytic activity of pristine samples.A wide range of carboxylic acids with a variety of functional groups can be converted to the corresponding alcohols at a yield level applicable to large‐scale production.Cobalt monoxide was established as the preferred active phase for the selective hydrogenation of carboxylic acids.展开更多
The role of carbodiimide as dehydrant in the chemo‐,regio‐and stereoselective Pd(Ⅱ/0)‐catalyzed hydrocarboxylation of various alkynes with HCOOH releasing CO in situ is reported for the first time to obtainα,β‐...The role of carbodiimide as dehydrant in the chemo‐,regio‐and stereoselective Pd(Ⅱ/0)‐catalyzed hydrocarboxylation of various alkynes with HCOOH releasing CO in situ is reported for the first time to obtainα,β‐unsaturated carboxylic acids.Both symmetrical and unsymmetrical monoalkynes show good reactivity.Importantly,2,2’‐(1,4‐phenylene)diacrylic acid can also be synthesized in high yield through the dihydrocarboxylation of 1,4‐diethynylbenzene.Besides,an excellent result in gram scale experiment and TON up to 900 can be obtained,displaying the efficiency of this protocol.Notably,regulating the types and concentrations of dehydrant can control the CO generation,avoiding directly operating toxic CO and circumventing sensitivity issue to the CO amount.On the basis of the attractive features of formic acid including easy preparation through CO_(2) hydrogenation and efficient liberation of CO,this protocol using formic acid as bridging reagent between CO_(2) and CO can be perceived as an indirect utilization of CO_(2),offering an alternative method for preparing acrylic acid analogues.展开更多
Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of s...Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of supported metal catalysts.However,few studies have investigated the ternary interactions among the metal,MO_(x),and support.Here,we report for the first time the formation of metal-MO_(x)-support interaction(MMSI)in reducible TiO_(2)-supported PtReO_(x) catalysts,affording 87% yield and 100% ee in the tandem hydrogenation of an aqueous chiral cyclohexane-1,2-dicarboxylic acid into the corresponding diol;the catalytic activity is eight times higher than that obtained with non-reducible support counterparts in the same reaction via traditional batch synthesis with multiple steps and unfriendly reagents.Detailed experimental and computational studies suggest that the TiO_(2) crystalline phase-dependent density of the oxygen vacancies induces different Pt-ReO_(x)-TiO_(2) interactions,which dominate the electron transfer therein and tune the adsorption strength of the carbonyl moiety of the substrate/intermediate,thus promoting the hydrogenation activity and selectivity.In addition,the strong MMSI endows the optimal rutile TiO_(2) supported PtReO_(x) catalyst with an outstanding lifetime of 400 h in a fixed-bed reactor under acidic aqueous conditions and ensures efficient applications in the selective hydrogenation of aliphatic dicarboxylic acids and functional carboxylic acids.This work provides a promising strategy for the development of efficient and stable supported catalysts for the selective hydrogenation of diverse C-O and C=O bonds.展开更多
The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the mo...The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology.The pyrolysis gas,liquid,and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate.Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate.During decarboxylation,the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate.The resulting p-πconjugated system was more stable and beneficial to the pyrolysis reaction(decarboxylation,terminal allylation,isomerization,and aromatization).The physical properties of pyrolysis liquid were generally similar to those of diesel fuel,thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.展开更多
An efficient and sustainable protocol for regioselective hydrocarboxylation of alkynes to construct diverse propionic acid derivatives is disclosed.Under photoinduced conditions,the anti-Markovnikov hydrocarboxylation...An efficient and sustainable protocol for regioselective hydrocarboxylation of alkynes to construct diverse propionic acid derivatives is disclosed.Under photoinduced conditions,the anti-Markovnikov hydrocarboxylation of alkynes was realized with CO_(2) radical anion in-situ generated from formate as both a carbonyl source and a reductant.The collaboration between photosensitizer and hydrogen atom transfer catalyst promoted the catalytic cycle to work smoothly,giving a broad substrate scope including terminal and internal alkynes.The Giese radical addition of CO_(2) radical anion to the C—C triple bond is the key step to initiate the reaction.展开更多
文摘The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.
文摘The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenation of carboxylic acids using earth‐abundant cobalt oxides through a reaction‐controlled catalysis process.The further reaction of the alcohols is completely hindered by the presence of carboxylic acids in the reaction system.The partial reduction of cobalt oxides by hydrogen at designated temperatures can dramatically enhance the catalytic activity of pristine samples.A wide range of carboxylic acids with a variety of functional groups can be converted to the corresponding alcohols at a yield level applicable to large‐scale production.Cobalt monoxide was established as the preferred active phase for the selective hydrogenation of carboxylic acids.
文摘The role of carbodiimide as dehydrant in the chemo‐,regio‐and stereoselective Pd(Ⅱ/0)‐catalyzed hydrocarboxylation of various alkynes with HCOOH releasing CO in situ is reported for the first time to obtainα,β‐unsaturated carboxylic acids.Both symmetrical and unsymmetrical monoalkynes show good reactivity.Importantly,2,2’‐(1,4‐phenylene)diacrylic acid can also be synthesized in high yield through the dihydrocarboxylation of 1,4‐diethynylbenzene.Besides,an excellent result in gram scale experiment and TON up to 900 can be obtained,displaying the efficiency of this protocol.Notably,regulating the types and concentrations of dehydrant can control the CO generation,avoiding directly operating toxic CO and circumventing sensitivity issue to the CO amount.On the basis of the attractive features of formic acid including easy preparation through CO_(2) hydrogenation and efficient liberation of CO,this protocol using formic acid as bridging reagent between CO_(2) and CO can be perceived as an indirect utilization of CO_(2),offering an alternative method for preparing acrylic acid analogues.
文摘Engineering the surface microenvironment by tuning the binary interactions between a supported metal with a secondary metal oxide(MO_(x))or support has been a common method for improving the catalytic performance of supported metal catalysts.However,few studies have investigated the ternary interactions among the metal,MO_(x),and support.Here,we report for the first time the formation of metal-MO_(x)-support interaction(MMSI)in reducible TiO_(2)-supported PtReO_(x) catalysts,affording 87% yield and 100% ee in the tandem hydrogenation of an aqueous chiral cyclohexane-1,2-dicarboxylic acid into the corresponding diol;the catalytic activity is eight times higher than that obtained with non-reducible support counterparts in the same reaction via traditional batch synthesis with multiple steps and unfriendly reagents.Detailed experimental and computational studies suggest that the TiO_(2) crystalline phase-dependent density of the oxygen vacancies induces different Pt-ReO_(x)-TiO_(2) interactions,which dominate the electron transfer therein and tune the adsorption strength of the carbonyl moiety of the substrate/intermediate,thus promoting the hydrogenation activity and selectivity.In addition,the strong MMSI endows the optimal rutile TiO_(2) supported PtReO_(x) catalyst with an outstanding lifetime of 400 h in a fixed-bed reactor under acidic aqueous conditions and ensures efficient applications in the selective hydrogenation of aliphatic dicarboxylic acids and functional carboxylic acids.This work provides a promising strategy for the development of efficient and stable supported catalysts for the selective hydrogenation of diverse C-O and C=O bonds.
基金the National Natural Science Foundation of China(No.21266022)the National High Technology Research and Development Program 863(2012AA101800-03+4 种基金2012AA02120562012AA021704)the International Cooperation of Jiangxi Province(No.20101208)the International Science & Technology Cooperation Program of China(No.2010DFB63750)the Natural Science Foundation of Jiangxi Province(No.2008GZH0047)
文摘The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave field.Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology.The pyrolysis gas,liquid,and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate.Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate.During decarboxylation,the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate.The resulting p-πconjugated system was more stable and beneficial to the pyrolysis reaction(decarboxylation,terminal allylation,isomerization,and aromatization).The physical properties of pyrolysis liquid were generally similar to those of diesel fuel,thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.
文摘An efficient and sustainable protocol for regioselective hydrocarboxylation of alkynes to construct diverse propionic acid derivatives is disclosed.Under photoinduced conditions,the anti-Markovnikov hydrocarboxylation of alkynes was realized with CO_(2) radical anion in-situ generated from formate as both a carbonyl source and a reductant.The collaboration between photosensitizer and hydrogen atom transfer catalyst promoted the catalytic cycle to work smoothly,giving a broad substrate scope including terminal and internal alkynes.The Giese radical addition of CO_(2) radical anion to the C—C triple bond is the key step to initiate the reaction.