The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,...The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.展开更多
A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron...A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron microscopy,and temperature‐programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism.Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading.Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface,which had a significant impact on the interaction between Ru and adsorbed H,and concomitantly,the H2activation capacity via the ability for H2dissociation.FeOx having0.01%of Ru loading exhibited100%selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H,which limits the desorption of the activated H species and hinders over‐reduction of CO to CH4.Further increasing the Ru loading of the catalysts to above0.01%resulted in the adsorbed H to be easily dissociated,as a result of a weaker interaction with Ru,which allowed excessive CO reduction to produce CH4.Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand t...Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.展开更多
Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function a...Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.展开更多
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ...Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.展开更多
Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent year...Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.展开更多
The objective of this study was to assess the role of AMPK in intramuscular fat(IMF) and fiber type in chicken muscle. The chickens were slaughtered and their muscles were collected at the ages of 4, 8, and 16 weeks s...The objective of this study was to assess the role of AMPK in intramuscular fat(IMF) and fiber type in chicken muscle. The chickens were slaughtered and their muscles were collected at the ages of 4, 8, and 16 weeks so as to determine the IMF contents, as well as the expression levels of AMPK subunits, regulators of adipogenesis. In addition, the myosin heavy chains(My HCs) in thigh muscle tissues were also measured. The results showed that the IMF contents in 16-week old chickens were higher than those in 4 and 8-week-old chickens(P<0.05).The expression levels of fatty acid synthase(FAS) and fatty aicd translocase CD36(FAT/CD36) m RNA were increased significantly in samples collected at the ages of4 and 16 weeks(P<0.05). The expression levels of My HC IIa and IIb differed significantly among all the developmental stages(P <0.05). The AMPKα2, AMPKγ1,and AMPKγ3 m RNA levels were dramatically decreased with the increase of age(P <0.05). To examine the role of AMPK in adipogenesis regulation, the SV cells were cultured in an adipogenesis medium and treated with AICAR and Compound C respectively, the specific activator and inhibit of AMPK. The Compound C induced dramatically a greater expression of C/EBPβ, SREBP1 and PPARγ(P <0.05). In conclusion, the expression of AMPKα2, AMPKγ1, and AMPKγ3 m RNA is significantly correlated with the adipogenesis in skeletal muscle of chickens.展开更多
Self-healing materials have attracted considerable attention because of their improved safety, lifetime, energy efficiency and environmental impact. Supramolecular interactions have been extensively considered in the ...Self-healing materials have attracted considerable attention because of their improved safety, lifetime, energy efficiency and environmental impact. Supramolecular interactions have been extensively considered in the field of self-healing materials due to their excellent reversibility and sensitive responsiveness to environmental stimuli. However,development of a polymeric material with good mechanical performance as well as self-healing capacity is very challenging. In this study, we report a robust self-healing polyurethane(PU) elastomer polypropylene glycol-2-amino-5-(2-hydroxyethyl)-6-methylpyrimidin-4-ol(PPG-mUPy) by integrating ureidopyrimidone(UPy) motifs with a PPG segment with a well-defined architecture and microphase morphology.To balance the self-healing capacity and mechanical performance, a thermal-triggered switch of H-bonding is introduced. The quadruple H-bonded UPy dimeric moieties in the backbone induce phase separation to form a hard domain as well as enable further aggregation into microcrystals by virtue of the stacking interactions, which are stable in ambient temperature. This feature endows the PU with high mechanical strength. Meanwhile, a high healing efficiency can be realized, when the reversibility of the H-bond was unlocked from the stacking at higher temperature. An optimized sample PPG1000-mUPy50%with a good balance of mechanical performance(20.62 MPa of tensile strength) and healing efficiency(93% in tensile strength) was achieved. This strategy will provide a new idea for developing robust self-healing polymers.展开更多
It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been consi...It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.展开更多
文摘目的探讨微小RNA(microRNA,miRNA)-320a和钠氢交换调控因子1(Na+/H+exchanger regulatory factor 1,NHERF1)在肝细胞癌(hepatocellular carcinoma,HCC)中的表达及机制。方法收集首都医科大学附属北京佑安医院2015年1月至2016年1月经手术治疗的HCC患者肝癌组织及癌旁组织。采用反转录聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR)检测miR-320a和NHERFl在HCC组织、癌旁组织、HCC细胞株Bel-7402和正常肝细胞株HL-7702中的表达。将体外培养的Bel-7402细胞分为对照组、空白组和miR-320a转染组,空白组中仅加入2 ml全培养基;对照组加入2 ml空载体质粒;miR-320a组将稀释的miR-320a混合液加入到完全养基中,最终体积为2 ml;采用RT-PCR检测Bel-7402细胞中miR-320a、NHERF1及β-catenin的表达,采用流式细胞术检测Bel-7402细胞的凋亡,采用Transwell检测Bel-7402细胞迁移侵袭能力。结果miR-320a(0.51±0.01 vs 0.83±0.02)和NHERFl(0.78±0.02 vs 1.42±0.05)在肝癌组织中的表达均显著低于癌旁组织,差异有统计学意义(t值分别为-80.25、-68.05,P均<0.001)。miR-320a(0.75±0.03 vs 0.81±0.04)和NHERFl(0.79±0.05 vs 1.58±0.05)在Bel-7402细胞中的相对表达量均显著低于HL-7702,差异有统计学意义(t=-2.73,P=0.021,t=-27.60,P<0.001)。对照组、空白组和miR-320a转染组在Bel-7402细胞中miR-320a相对表达量分别为0.77±0.04、0.79±0.05和1.28±0.07,差异有统计学意义(H=11.66,P=0.003),miR-320a转染组显著高于对照组和空白组(H值分别为8.308、8.308,P值分别为0.004、0.004)。对照组、空白组和miR-320a转染组Bel-7402细胞中NHERFl相对表达量分别为0.82±0.04、0.70±0.04和1.46±0.06,差异有统计学意义(H=15.17,P=0.001),miR-320a转染组显著高于对照组和空白组(H值分别为8.337、8.308,P值分别为0.004、0.004)。空白组、对照组和miR-320a转染组Bel-7402细胞凋亡率分别为11.2%、11.4%、32.5%,差异有统计学意义(χ^2=9263.95,P<0.001)。其中miR-320a转染组显著高于空白组和对照组(χ^2值分别为7508.35、5100.96,P均<0.001),空白组和对照组间差异无统计学意义(χ^2=1.024,P=0.311)。miR-320a组Bel-7402迁移能力显著降低。对照组、空白组和miR-320a转染组Bel-7402细胞中β-catenin的相对表达量分别为1.66±0.07、1.62±0.06、0.64±0.02,差异有统计学意义(H=12.117,P=0.002)。其中,miR-320a转染组显著低于空白组和对照组(H值分别为8.308、8.308,P值分别为0.004、0.004),空白组和对照组间差异无统计学意义(H=1.641,P=0.200)。结论miR-320a和NHERF1在HCC中表达降低,miR-320a可能通过Wnt信号转导通路发挥作用,抑制癌细胞的增殖。
基金supported by the National Natural Science Foundation of China(21276041)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province(2015020200)the Fundamental Research Funds for the Central Universities(DUT15LK41)~~
文摘The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.
基金supported by the National Natural Science Foundation of China(21476145,91645117)China Postdoctoral Science Foundation(2016M600221)~~
文摘A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron microscopy,and temperature‐programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism.Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading.Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface,which had a significant impact on the interaction between Ru and adsorbed H,and concomitantly,the H2activation capacity via the ability for H2dissociation.FeOx having0.01%of Ru loading exhibited100%selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H,which limits the desorption of the activated H species and hinders over‐reduction of CO to CH4.Further increasing the Ru loading of the catalysts to above0.01%resulted in the adsorbed H to be easily dissociated,as a result of a weaker interaction with Ru,which allowed excessive CO reduction to produce CH4.Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金was supported by the National Natural Science Foundation of China(91545113,21703050)the China Postdoctoral Science Foundation(2017M610363,2018T110584)+2 种基金Shell Global Solutions International B.V.(PT71423,PT74557)the Fok Ying Tong Education Foundation(131015)the Science&Technology Program of Ningbo(2017C50014)~~
文摘Thermal stability has long been recognized as a major limitation for the application of ligand modification in high-temperature reactions. Herein, we demonstrate polymeric phosphate as an efficient and stable ligand to tune the selectivity of propane oxidative dehydrogenation. Beneficial from the weakened affinity of propene, NiO modified with polymeric phosphate shows a selectivity 2–3 times higher than NiO towards the production of propene. The success of this regulation verifies the feasibility of ligand modification in high-temperature gas-phase reactions and shines a light on its applications in other important industrial reactions.
文摘Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.
文摘Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.
文摘Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.
基金Supported by National Natural Science Foundation of China(31472117)Natural Science Foundation of Hubei Province of China(2011CDB012)Project of State Key Laboratory of Animal Nutrition in China(2004DA125184F1012)
文摘The objective of this study was to assess the role of AMPK in intramuscular fat(IMF) and fiber type in chicken muscle. The chickens were slaughtered and their muscles were collected at the ages of 4, 8, and 16 weeks so as to determine the IMF contents, as well as the expression levels of AMPK subunits, regulators of adipogenesis. In addition, the myosin heavy chains(My HCs) in thigh muscle tissues were also measured. The results showed that the IMF contents in 16-week old chickens were higher than those in 4 and 8-week-old chickens(P<0.05).The expression levels of fatty acid synthase(FAS) and fatty aicd translocase CD36(FAT/CD36) m RNA were increased significantly in samples collected at the ages of4 and 16 weeks(P<0.05). The expression levels of My HC IIa and IIb differed significantly among all the developmental stages(P <0.05). The AMPKα2, AMPKγ1,and AMPKγ3 m RNA levels were dramatically decreased with the increase of age(P <0.05). To examine the role of AMPK in adipogenesis regulation, the SV cells were cultured in an adipogenesis medium and treated with AICAR and Compound C respectively, the specific activator and inhibit of AMPK. The Compound C induced dramatically a greater expression of C/EBPβ, SREBP1 and PPARγ(P <0.05). In conclusion, the expression of AMPKα2, AMPKγ1, and AMPKγ3 m RNA is significantly correlated with the adipogenesis in skeletal muscle of chickens.
基金financially supported by the National Natural Science Foundation of China(51773131,51811530149and 51721091)the International S&T Cooperation Project of Sichuan Province(2017HH0034)
文摘Self-healing materials have attracted considerable attention because of their improved safety, lifetime, energy efficiency and environmental impact. Supramolecular interactions have been extensively considered in the field of self-healing materials due to their excellent reversibility and sensitive responsiveness to environmental stimuli. However,development of a polymeric material with good mechanical performance as well as self-healing capacity is very challenging. In this study, we report a robust self-healing polyurethane(PU) elastomer polypropylene glycol-2-amino-5-(2-hydroxyethyl)-6-methylpyrimidin-4-ol(PPG-mUPy) by integrating ureidopyrimidone(UPy) motifs with a PPG segment with a well-defined architecture and microphase morphology.To balance the self-healing capacity and mechanical performance, a thermal-triggered switch of H-bonding is introduced. The quadruple H-bonded UPy dimeric moieties in the backbone induce phase separation to form a hard domain as well as enable further aggregation into microcrystals by virtue of the stacking interactions, which are stable in ambient temperature. This feature endows the PU with high mechanical strength. Meanwhile, a high healing efficiency can be realized, when the reversibility of the H-bond was unlocked from the stacking at higher temperature. An optimized sample PPG1000-mUPy50%with a good balance of mechanical performance(20.62 MPa of tensile strength) and healing efficiency(93% in tensile strength) was achieved. This strategy will provide a new idea for developing robust self-healing polymers.
基金the National Natural Science Foundation of China(21671096,21603094 and21905180)the Natural Science Foundation of Guangdong Province(2018B030322001 and 2018A030310225)+4 种基金Shenzhen Peacock Plan(KQTD2016022620054656)Shenzhen Key Laboratory Project(ZDSYS201603311013489)the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(JCYJ20190809115413414)the Science and Technology Development Fund from Macao SAR(FDCT–0102/2019/A2,FDCT–0035/2019/AGJ and FDCT–0154/2019/A3)the Multi-Year Research Grants(MYRG2017–00027–FST and MYRG2018–00003–IAPME)from the University of Macao。
文摘It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.