As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular...As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.展开更多
Benzoxazine resin,being a new type of phenolic resin deve-loped to overcome the shortcomings of traditional phenolic resins,has been synthesized from phenol,formaldehyde and amine,and does not require solvent eliminat...Benzoxazine resin,being a new type of phenolic resin deve-loped to overcome the shortcomings of traditional phenolic resins,has been synthesized from phenol,formaldehyde and amine,and does not require solvent elimination or monomer purification to obtain a relatively clean precursor.It has potential application in the field of aerospace due to its low expansion coefficient,high weather resistance,high carbon yield,good mechanical strength,and excellent ablation resistance[1].It can be mixed with various other resins or polymers to produce new resins with a broad range of applications[2-3].展开更多
There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help th...There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help the selection of force fields, the performances of five repre- sentative force fields for gaseous neutral, protonated, deprotonated and capped amino acids are systematically examined and compared. The tested properties include relative conforma- tional energies, energy differences between cis and trans structures, the number and strength of predicted hydrogen bonds, and the quality of the optimized structures. The results of BHandHLYP/6-311++G(d,p) are used as the references. GROMOS53A6 and ENCADS are found to perform poorly for gaseous biomoleeules, while the performance of AMBER99SB, CHARMM27 and OPLSAA/L are comparable when applicable. Considering the general availability of the force field parameters, CHARMM27 is the most recommended, followed by OPLSAA/L, for the study of biomolecules in gas phase展开更多
1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between ...1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAPT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.展开更多
Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of arnrnoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorie...Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of arnrnoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorientation dynamics of NH4+ is faster in its aqueous solution than in rnethanol, which deviates from the Stokes-Einstein-Debye rule since water has higher viscosity than methanol. To address this intriguing issue, we herein study the reorientation dynamics of ammonium ion in both solutions using numerical simulation and an extended cyclic Markov chain model. An evident decoupling between translation and ro- tation of methanol is observed in simulation, which results in the deviation of reorientation from the Stokes-Einstein-Debye rule. Slower hydrogen bond (HB) switchings of ammonium with rnethanol comparing to that with water, due to the steric effect of the rnethyl group, remarkably retards the jump rotation of ammonium. The observations herein provide useful insights into the dynamic behavior of ammonium in the heterogeneous environments including the protein surface or protein channels.展开更多
In this article we describe a range of simulations (lattice dynamics and molecular dynamics) of the inelastic incoherent neutron scattering spectra of ices (normal ice, ice Ⅱ and ice Ⅷ). These simulations use a vari...In this article we describe a range of simulations (lattice dynamics and molecular dynamics) of the inelastic incoherent neutron scattering spectra of ices (normal ice, ice Ⅱ and ice Ⅷ). These simulations use a variety of different intermolecular potentials from simple classic pair-wise (rigid and non-rigid molecule) potentials to sophisticated polarisable potentials. It was found that MCY makes stretching and bending interactions too weak while others do them well. We demonstrate that in order to reproduce the measured neutron spectrum, greater anisotropy (or orientational variation) is required than these potentials presently provide.展开更多
Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of CLF molecule in water are p...Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of CLF molecule in water are performed with the Lennard-Jones plus Coulomb electrostatic potential parameters that are optimized with ab initio interaction energy calculations for the pre-reactive H2O-CLF complex. We find that the halogen bonding interactions occur between O and CL atoms and have the comparable strength and population with respect to the hydrogen bonding interactions of C1...H.展开更多
Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pa...Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-005)the National Natural Science Foundation of China(22325304,22221003 and 22033007)We acknowledge the Supercomputing Center of USTC,Hefei Advanced Computing Center,Beijing PARATERA Tech Co.,Ltd.,for providing high-performance computing services。
文摘As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.
基金Supported by Shanghai Aerospace Science and Technology Innovation Fund Project (SAST 2022-097)。
文摘Benzoxazine resin,being a new type of phenolic resin deve-loped to overcome the shortcomings of traditional phenolic resins,has been synthesized from phenol,formaldehyde and amine,and does not require solvent elimination or monomer purification to obtain a relatively clean precursor.It has potential application in the field of aerospace due to its low expansion coefficient,high weather resistance,high carbon yield,good mechanical strength,and excellent ablation resistance[1].It can be mixed with various other resins or polymers to produce new resins with a broad range of applications[2-3].
文摘There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help the selection of force fields, the performances of five repre- sentative force fields for gaseous neutral, protonated, deprotonated and capped amino acids are systematically examined and compared. The tested properties include relative conforma- tional energies, energy differences between cis and trans structures, the number and strength of predicted hydrogen bonds, and the quality of the optimized structures. The results of BHandHLYP/6-311++G(d,p) are used as the references. GROMOS53A6 and ENCADS are found to perform poorly for gaseous biomoleeules, while the performance of AMBER99SB, CHARMM27 and OPLSAA/L are comparable when applicable. Considering the general availability of the force field parameters, CHARMM27 is the most recommended, followed by OPLSAA/L, for the study of biomolecules in gas phase
基金Supported by the National Natural Science Foundation of China (No. 29976035)the Natural Science Foundation of Zhejiang Provincial (No. RC01051).
文摘1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAPT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.
基金supported by the National Key Research and Development Program of China(2017YFA0206801)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000 and XDB10040304)the National Natural Science Foundation of China(No.21373201and No.21433014)
文摘Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of arnrnoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorientation dynamics of NH4+ is faster in its aqueous solution than in rnethanol, which deviates from the Stokes-Einstein-Debye rule since water has higher viscosity than methanol. To address this intriguing issue, we herein study the reorientation dynamics of ammonium ion in both solutions using numerical simulation and an extended cyclic Markov chain model. An evident decoupling between translation and ro- tation of methanol is observed in simulation, which results in the deviation of reorientation from the Stokes-Einstein-Debye rule. Slower hydrogen bond (HB) switchings of ammonium with rnethanol comparing to that with water, due to the steric effect of the rnethyl group, remarkably retards the jump rotation of ammonium. The observations herein provide useful insights into the dynamic behavior of ammonium in the heterogeneous environments including the protein surface or protein channels.
基金We would like to thank National Natural Science Foundation of China(Grand No.10144001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,for their financial supports.
文摘In this article we describe a range of simulations (lattice dynamics and molecular dynamics) of the inelastic incoherent neutron scattering spectra of ices (normal ice, ice Ⅱ and ice Ⅷ). These simulations use a variety of different intermolecular potentials from simple classic pair-wise (rigid and non-rigid molecule) potentials to sophisticated polarisable potentials. It was found that MCY makes stretching and bending interactions too weak while others do them well. We demonstrate that in order to reproduce the measured neutron spectrum, greater anisotropy (or orientational variation) is required than these potentials presently provide.
基金This work is supported by the National Natural Science Foundation of China (No.20673105).
文摘Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of CLF molecule in water are performed with the Lennard-Jones plus Coulomb electrostatic potential parameters that are optimized with ab initio interaction energy calculations for the pre-reactive H2O-CLF complex. We find that the halogen bonding interactions occur between O and CL atoms and have the comparable strength and population with respect to the hydrogen bonding interactions of C1...H.
基金supported by the National Natural Science Foundation of China(21573060,21673068)Program for Innovative Research Team in Science and Technology in University of Henan Province(16IRTSTHN002)+1 种基金Plan for Scientific Innovation Talent of Henan Province(144200510004)The High Performance Computing Center of Henan Normal University
文摘Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.