Hydroxy-phenyl)-5-(2-methyl-phenyl)-6-ethoxycarbonyl-cyclohexen-2-one has been synthesized and characterized by elemental analysis, IR, UV, H NMR and MS, and its crystal 1 structure was determined by X-ray single-crys...Hydroxy-phenyl)-5-(2-methyl-phenyl)-6-ethoxycarbonyl-cyclohexen-2-one has been synthesized and characterized by elemental analysis, IR, UV, H NMR and MS, and its crystal 1 structure was determined by X-ray single-crystal diffraction method. The crystal belongs to the monoclinic system, space group P21/c with a = 14.6298(13), b = 5.8623(5), c = 22.255(2) ?, β = 105.855(2)o, V = 1836.0(3) ?3, Mr = 350.40, Z = 4, Dc = 1.268 g/cm3, F(000) = 744, μ(MoKα) = 0.086 mm-1, R = 0.0680 and wR = 0.1498. The crystal analysis results show that the cyclohexene unit of the title compound has a quasi-chair conformation, and a centrosymmetric dimer with a 16-membered ring is produced by the intermolecular hydrogen bonds.展开更多
The interacting patterns of the luteolin and guanine have been investigated by using the density functional theory B3LYP method with 6-31+G* basis set. Eighteen stable structures for the luteolin-guanine complexes h...The interacting patterns of the luteolin and guanine have been investigated by using the density functional theory B3LYP method with 6-31+G* basis set. Eighteen stable structures for the luteolin-guanine complexes have been found respectively. The results indicate that the complexes are mainly stabilized by the hydrogen bonding interactions. Meanwhile, both the number and strength of hydrogen bond play important roles in determining the stability of the complexes which can form two or more hydrogen bonds. Theories of atoms in molecules and natural bond orbital have also been utilized to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes which were corrected by basis set superposition error are 6.04-56.94 kJ/mol. The calculation results indicate that there are strong hydrogen bonding interactions in the luteolin-guanine complexes. We compared the interaction between luteolin and four bases of DNA, and found luteolin-thymine was the strongest and luteolin-adenine was the weakest. The interaction between luteolin and DNA bases are all stronger than luteolin-water.展开更多
The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2× 10^14 molecules/cm2) co...The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2× 10^14 molecules/cm2) coverage at five-coordinated titanium (Tisc) sites to form the first layer. In the second layer, the CH3OH is adsorbed at bridge-bonded oxygen, and from the third layer, the CH3OH molecules form a hydrogen-bonded network with each other. The theoretical results show that dissociation of multilayer adsorbed methanol to aldehyde occurs through a stepwise pathway, with easy O-H bond dissociation and rate-determining C-H bond dissociation. The dissociation barriers for 8 or 12 CH3OH molecules on TiO2 are higher than that for low coverage by 0.15-0.21 eV; this suggests that the dissociation of multilayer adsorbed CH3OH is harder.展开更多
基金This work was financially supported by the Education Committee of Hunan Province (02C465)Hunan Provincial Key Discipline and Hunan Provincial General College Leader of Learning
文摘Hydroxy-phenyl)-5-(2-methyl-phenyl)-6-ethoxycarbonyl-cyclohexen-2-one has been synthesized and characterized by elemental analysis, IR, UV, H NMR and MS, and its crystal 1 structure was determined by X-ray single-crystal diffraction method. The crystal belongs to the monoclinic system, space group P21/c with a = 14.6298(13), b = 5.8623(5), c = 22.255(2) ?, β = 105.855(2)o, V = 1836.0(3) ?3, Mr = 350.40, Z = 4, Dc = 1.268 g/cm3, F(000) = 744, μ(MoKα) = 0.086 mm-1, R = 0.0680 and wR = 0.1498. The crystal analysis results show that the cyclohexene unit of the title compound has a quasi-chair conformation, and a centrosymmetric dimer with a 16-membered ring is produced by the intermolecular hydrogen bonds.
文摘The interacting patterns of the luteolin and guanine have been investigated by using the density functional theory B3LYP method with 6-31+G* basis set. Eighteen stable structures for the luteolin-guanine complexes have been found respectively. The results indicate that the complexes are mainly stabilized by the hydrogen bonding interactions. Meanwhile, both the number and strength of hydrogen bond play important roles in determining the stability of the complexes which can form two or more hydrogen bonds. Theories of atoms in molecules and natural bond orbital have also been utilized to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes which were corrected by basis set superposition error are 6.04-56.94 kJ/mol. The calculation results indicate that there are strong hydrogen bonding interactions in the luteolin-guanine complexes. We compared the interaction between luteolin and four bases of DNA, and found luteolin-thymine was the strongest and luteolin-adenine was the weakest. The interaction between luteolin and DNA bases are all stronger than luteolin-water.
基金financially supported by National Natural Science Foundation of China(21173212)the Key Research Program of the Chinese Academy of Sciences
文摘The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2× 10^14 molecules/cm2) coverage at five-coordinated titanium (Tisc) sites to form the first layer. In the second layer, the CH3OH is adsorbed at bridge-bonded oxygen, and from the third layer, the CH3OH molecules form a hydrogen-bonded network with each other. The theoretical results show that dissociation of multilayer adsorbed methanol to aldehyde occurs through a stepwise pathway, with easy O-H bond dissociation and rate-determining C-H bond dissociation. The dissociation barriers for 8 or 12 CH3OH molecules on TiO2 are higher than that for low coverage by 0.15-0.21 eV; this suggests that the dissociation of multilayer adsorbed CH3OH is harder.