期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
稀土金属助催的甲醇水蒸汽重整制氢催化剂的研究
1
作者 云虹 符显珠 +2 位作者 林敬东 陈鸿博 廖代伟 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期60-63,共4页
制备稀土金属离子助催的铜锌基甲醇水蒸汽重整催化剂并分别比较了铜锌和两种以稀土Ce3+,Zr4+为助催剂的铜锌催化剂上甲醇水蒸汽重整制氢的催化性能:在220℃反应条件下,Cu ZnO,Cu ZnO Ce2O3和Cu ZnO ZrO2的甲醇转化率分别为28.1%、37.3%... 制备稀土金属离子助催的铜锌基甲醇水蒸汽重整催化剂并分别比较了铜锌和两种以稀土Ce3+,Zr4+为助催剂的铜锌催化剂上甲醇水蒸汽重整制氢的催化性能:在220℃反应条件下,Cu ZnO,Cu ZnO Ce2O3和Cu ZnO ZrO2的甲醇转化率分别为28.1%、37.3%和51.6%,后两个催化剂的氢选择性高达100%,CO的选择性为0.Cu ZnO ZrO2催化剂经60h的运转后,催化剂的性能不变,触氧实验表明该催化剂能满足甲醇燃料电池电动车启动温度低、CO2选择性高的要求. 展开更多
关键词 稀土金属 甲醇水蒸汽重整 铜锌基催化剂 氢-氧燃料电池 催化性能
下载PDF
Theoretical On-Board Hydrogen Redox Electric Power Generator for Infinite Cruising Range Fuel Cell Vehicles 被引量:2
2
作者 Katsutoshi Ono 《Journal of Energy and Power Engineering》 2017年第10期646-654,共9页
The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen e... The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen electrolytic cell equipped with an electrostatic-induction potential-superposed water electrolytic cell that provides a stoichiometric H2-O2 fuel mixture during operation of the vehicle. This generator functions with zero power input, zero matter input and zero emission due to the so-called "zero power input" electrostatic-to-chemical energy conversion occurring in the electrolytic cell. Here, theoretical simulations were performed to verify the target performance of such generators, assuming a pair of FC (fuel cell) and electrolytic cell stacks, both of which are commercially available. 展开更多
关键词 Fuel cell vehicle power generator electrolytic cell FC infinite cruising range.
下载PDF
石墨炔在电化学储能器件中的应用研究 被引量:1
3
作者 赵金良 黄成德 《功能材料》 CAS CSCD 北大核心 2022年第8期8045-8053,共9页
石墨炔作为一种新型二维碳材料,具有π共轭单元、sp^(2)和sp杂化的碳原子和可调节的孔结构,结构稳定,导电性好,可塑性强。简要介绍了不同类型的石墨炔及其结构,阐述了石墨炔及其衍生物的合成策略,重点综述了石墨炔及石墨炔衍生物在能源... 石墨炔作为一种新型二维碳材料,具有π共轭单元、sp^(2)和sp杂化的碳原子和可调节的孔结构,结构稳定,导电性好,可塑性强。简要介绍了不同类型的石墨炔及其结构,阐述了石墨炔及其衍生物的合成策略,重点综述了石墨炔及石墨炔衍生物在能源领域的研究内容和成果,介绍了石墨炔及其衍生物在锂离子电池、氢-氧燃料电池、钠离子电池、超级电容器和其它一些电化学储能器件及材料上的研究成果。综合分析表明,石墨炔在电化学储能器件方面具有广阔的应用前景。 展开更多
关键词 石墨炔 石墨二炔 锂离子电池 氢-氧燃料电池 超级电容器
下载PDF
Carbon supported IrM(M= Fe,Ni,Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium 被引量:6
4
作者 廖建华 丁炜 +6 位作者 陶思成 聂瑶 李巍 吴光平 陈四国 李莉 魏子栋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1142-1148,共7页
We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm w... We studied the alloying effect in lr-based alloys on the catalysis of the hydrogen oxidation reaction (HOP,) in both acidic and alkaline medium. IrFe, lrNi and IrCo alloy catalysts with nanoparticle size of 〈S nm were obtained by our solvent-vaporization plus hydrogen reduction method. The second metal played an important role in tuning the crystal structure and surface electronic structure of the Ir-based alloy catalyst. Among the lrFe, IrCo and lrNi alloy catalysts, Ni induced a mid-sized contrac- tion of the lr lattice, and gave the best HOR activity in both acidic and alkaline medium. In acidic medium, the weakening of the Ir-Had interaction caused by the electronic effect of M (M = Fe, Ni, Co) alloying is responsible for the enhancement of HOR activity. The oxophilic effect of the catalytic metal surface, which affects OHad adsorption and desorption and surface Had coverage, has a large impact on the HOR activity in the case of alkaline medium, 展开更多
关键词 Alloying effectHydrogen oxidation reactionIridium alloyLattice contractionFuel cell
下载PDF
Catalytic activity of V_(2)CO_(2) MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions:A density functional theory calculation study
5
作者 Zhongjing Deng Xingqun Zheng +3 位作者 Mingming Deng Li Li Li Jing Zidong Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1659-1666,共8页
Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,... Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,which,in turn,affect the intrinsic activity of 2D materials.Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene(V_(2)CO_(2))-supported transition metal(TM)SAs,including a series of 3d,4d,and 5d metals,as oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR)catalysts.The combination of TM SAs and V_(2)CO_(2)changes their electronic structure and enriches the active sites,and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR.Among the investigated TM-V_(2)CO_(2)models,Sc-,Mn-,Rh-,and PtMCCh showed high ORR activity,while Sc-,Ti-,V-,Cr-,and Mn-V_(2)CO_(2)exhibited high HOR activity.Specifically,Mn-and Sc-V_(2)CO_(2)are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability.This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts. 展开更多
关键词 Single atoms catalyst MXenes Oxygen reduction reaction Hydrogen oxidation reaction Density functional theory Fuel cells
下载PDF
Electrocatalysts development for hydrogen oxidation reaction in alkaline media:From mechanism understanding to materials design
6
作者 Yang Qiu Xiaohong Xie +1 位作者 Wenzhen Li Yuyan Shao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第12期2094-2104,共11页
Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders... Anion exchange membrane(AEM)fuel cells have gained great attention partially due to the advantage of using non-precious metal as catalysts.However,the reaction kinetics of hydrogen oxidation reaction(HOR)is two orders of magnitude slower in alkaline systems than in acid.To understand the slower kinetics of HOR in base,two major theories have been proposed,such as(1)pH dependent hydrogen binding energy as a major descriptor for HOR;and(2)bifunctional theory based on the contributions of both hydrogen and hydroxide adsorption for HOR in alkaline electrolyte.Here,we discuss the possible HOR mechanisms in alkaline electrolytes with the corresponding change in their Tafel behavior.Apart from the traditional Tafel-Volmer and Heyrovsky-Volmer HOR mechanisms,the recently proposed hydroxide adsorption step is also discussed to illustrate the difference in HOR mechanisms in acid and base.We further summarize the representative works of alkaline HOR catalyst design(e.g.,precious metals,alloy,intermetallic materials,Ni-based alloys,carbides,nitrides,etc.),and briefly describe their fundamental HOR reaction mechanism to emphasize the difference in elementary reaction steps in alkaline medium.The strategy of strengthening local interaction that facilitates both H2 desorption and Hads+OHads recombination is finally proposed for future HOR catalyst design in alkaline environment. 展开更多
关键词 Hydrogen oxidation reaction Alkaline electrolyte Fuel cell ELECTROCATALYST ELECTROCATALYSIS Hydrogen and hydroxide binding energy
下载PDF
Modelling the Hydrogen Inhibition Effect on Ammonia Decomposition
7
作者 Denver Cheddie 《Journal of Energy and Power Engineering》 2014年第4期663-670,共8页
Recently ammonia has been investigated as a fuel for SOFCs (solid oxide fuel cells). Ammonia is widely produced and transported globally, and stores hydrogen in its bonds making it an excellent fuel for fuel cells. ... Recently ammonia has been investigated as a fuel for SOFCs (solid oxide fuel cells). Ammonia is widely produced and transported globally, and stores hydrogen in its bonds making it an excellent fuel for fuel cells. The high temperature of SOFCs allows for internal decomposition of ammonia. Previous models of ammonia-fed SOFCs treat ammonia decomposition as having first order dependence on ammonia partial pressure, and ignore the effect of hydrogen inhibition. However, research has shown that at low temperatures (≤ 600 ℃) and low ammonia partial pressures, the rate of ammonia decomposition is inhibited by the presence of hydrogen. This hydrogen inhibition effect was studied and implemented in a model of an ammonia decomposition reactor. Results showed that it may significantly decrease the rate of hydrogen generation. This work sets the foundation for more accurate modelling of intermediate temperature ammonia-fed SOFCs. 展开更多
关键词 Temkin-pyzhev model hydrogen inhibition ammonia decomposition solid oxide fuel cells.
下载PDF
Self-healing and highly elastic fluorine-free proton exchange membranes comprised of poly(vinyl alcohol) derivative and phytic acid for durable fuel cells 被引量:2
8
作者 Yixuan Li Zhengxuan Li +1 位作者 Wenjie Wang Junqi Sun 《Science China Materials》 SCIE EI CSCD 2020年第7期1235-1246,共12页
Fluorine-free proton exchange membranes(PEMs)capable of healing from physical damage are important for PEM fuel cells(PEMFCs)with extended service life and enhanced reliability.Herein,highly elastic fluorine-free PEMs... Fluorine-free proton exchange membranes(PEMs)capable of healing from physical damage are important for PEM fuel cells(PEMFCs)with extended service life and enhanced reliability.Herein,highly elastic fluorine-free PEMs with excellent self-healing ability and high proton conductivity are fabricated through complexation of phytic acid(PA)with sulfonated polyvinyl alcohol(SPVA),followed by subsequent grafting of SPVA with positively charged 4-(1H-imidazol-1-yl)benzenecarbaldehyde(IBZ).Compared with recast Nafion membranes,the as-prepared SPVA-IBZ/PA membranes exhibit an enhanced mechanical strength and elasticity and can spontaneously recover from a^50%strain to their initial states within^30 s at room temperature.Meanwhile,the SPVA-IBZ/PA membranes have a proton conductivity of^0.095 S cm-1at^70°C,which is higher than that of recast Nafion membranes.The hydrogen-powered PEMFCs using the SPVA-IBZ/PA membranes,which show an open circuit voltage of^0.98 V and maximum power density of^609 mW cm-2,exhibit a satisfactory cell performance.Importantly,the SPVA-IBZ/PA membranes can spontaneously heal mechanical damage of several tens of micrometers in size and restore their original proton conductivity and cell performance under the working conditions of PEMFCs. 展开更多
关键词 proton exchange membranes self-healing materials proton conduction fuel cells supramolecular materials
原文传递
Converting biomass into efficient oxygen reduction reaction catalysts for proton exchange membrane fuel cells 被引量:6
9
作者 Xingdong Wang Jinjie Fang +6 位作者 Xuerui Liu Xiangqian Zhang Qingqing Lv Zhaoxiang Xu Xuejiang Zhang Wei Zhu Zhongbin Zhuang 《Science China Materials》 SCIE EI CSCD 2020年第4期524-532,共9页
It is urgent to develop low-cost but efficient oxygen reduction reaction(ORR)catalysts for the emerging clean energy devices of fuel cells based on proton exchange membrane.Herein,we report a facile method to covert t... It is urgent to develop low-cost but efficient oxygen reduction reaction(ORR)catalysts for the emerging clean energy devices of fuel cells based on proton exchange membrane.Herein,we report a facile method to covert the biomass of black fungus into an efficient ORR catalyst.The black fungus undergoes hydrothermal and pyrolysis processes to transform into carbon-based materials.The as-obtained BF-N-950 catalyst shows prominent ORR catalytic activities in both acidic and alkaline electrolytes with a half-wave potential reaching 0.77 and 0.91 V,respectively.A membrane electrolyte assembly was fabricated with the as-obtained BF-N-950 as the cathode catalyst which shows a high peak power density of255 mW cm^-2.The study shows the potential of converting conventional biomass into low-cost ORR catalyst,which is promising for the fuel cell technology. 展开更多
关键词 BIOMASS oxygen reduction reaction ELECTROCATALYSTS proton exchange membrane fuel cell
原文传递
The dual role of hydrogen peroxide in fuel cells 被引量:3
10
作者 安亮 赵天寿 +2 位作者 闫晓晖 周学龙 谈鹏 《Science Bulletin》 SCIE EI CAS CSCD 2015年第1期55-64,共10页
Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electrici... Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electricity, are expected to be a key enabling technology for the pressing energy issues that plague our planet. Fuel cells require oxygen as an oxidant and require oxygen tank containers when used in air-free environments such as outer space and underwater. Hydrogen peroxide has been extensively uti- lized as an alternative liquid oxidant in place of gaseous oxygen. In addition to being an oxidant, hydrogen peroxide can donate electrons in the oxidation reaction to act as a fuel. This article provides an overview of the dual role of hydrogen peroxide in fuel-cell applications, including working principle, system design, and cell performance. Recent innovations and future perspectives of fuel cells that use hydrogen peroxide are particularly emphasized. 展开更多
关键词 Fuel cell Hydrogen peroxide Mixedpotential Hydrogen peroxide reduction reaction Hydrogen peroxide oxidation reaction PERFORMANCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部