为实现热-电-氢综合能源系统在满足多种负荷需求的同时,能有效地降低经济成本,提出了一种以经济性为目标的双层优化配置算法,研究了孤岛综合能源系统的优化配置。首先,搭建了热-电-氢混合耦合综合能源系统(the combined hydrogen,heat a...为实现热-电-氢综合能源系统在满足多种负荷需求的同时,能有效地降低经济成本,提出了一种以经济性为目标的双层优化配置算法,研究了孤岛综合能源系统的优化配置。首先,搭建了热-电-氢混合耦合综合能源系统(the combined hydrogen,heat and power system,CHHP),然后考虑到设备购置、运维以及燃料电池、电解槽和蓄电池的老化建立了系统总目标函数。再采用上层算法为混合正余弦灰狼算法(gray wolf optimization with sine cosine algorithm,GWO-SCA),下层算法为混合整数线性规划(mixed integer linear programming,MILP)的双层优化配置算法对设备容量进行求解。最后运用算例,验证了该算法的优越性。并对系统中的电动汽车负荷考虑了多种充电方式,讨论了不同充电方式对配置结果和经济成本的影响。结果表明所提优化配置方法能够实现综合能源系统的经济、稳定运行。展开更多
A series of tungsten-substituted molybdophosphoric acids(H3PMo12-nWnO40·xH2O) were synthesized and characterized by inductive coupled plasma atomic emission spectroscopy(ICPAES),thermal gravimetry and differentia...A series of tungsten-substituted molybdophosphoric acids(H3PMo12-nWnO40·xH2O) were synthesized and characterized by inductive coupled plasma atomic emission spectroscopy(ICPAES),thermal gravimetry and differential scanning calorimetry(TG-DSC),Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),and FTIR pyridine adsorption.The as-prepared heteropoly acids have a Keggin type structure.The synthesis of tetrahydrofuran by reactive distillation and cyclodehydration of 1,4-butanediol was studied using the tungsten-substituted molybdophosphoric acids as catalysts.The results of catalytic test indicated that the catalytic activity increased with the increase in the substitution number(n) of tungsten atom in H3PMo12-nWnO40·xH2O and was constant as the substitution number(n) was more than 8.The catalytic activity increased with the increase in the catalyst loading and the selectivity of tetrahydrofuran was nearly 100%.展开更多
Soil test for availability of nutrients and heavy metals is extensively served as a means for the evaluations of soil fertility, and environmental effects and phytotoxicity of pollutants in soils, and for the fertiliz...Soil test for availability of nutrients and heavy metals is extensively served as a means for the evaluations of soil fertility, and environmental effects and phytotoxicity of pollutants in soils, and for the fertilizer recommendation in agricultural and environmental sciences. Therefore, great attention has been paid to the measurement of elemental availability in soil test.展开更多
The divergent behavior of C-H bond oxidations of aliphatic substrates compared to those of aromatic substrates shown in Gupta’s experiment was mechanistically studied herein by means of density functional theory calc...The divergent behavior of C-H bond oxidations of aliphatic substrates compared to those of aromatic substrates shown in Gupta’s experiment was mechanistically studied herein by means of density functional theory calculations.Our calculations reveal that such difference is caused by different reaction mechanisms between two kinds of substrates(the aliphatic cyclohexane,2,3-dimethylbutane and the aromatic toluene,ethylbenzene and cumene).For the aliphatic substrates,C-H oxidation by the oxidant Fe^(V)(O)(TAML)is a hydrogen atom transfer process;whereas for the aromatic substrates,C-H oxidation is a proton-coupled electron transfer(PCET)process with a proton transfer character on the transition state,that is,a proton-coupled electron transfer process holding a proton transfer-like transition state(PCET(PT)).This difference is caused by the strongπ-πinteractions between the tetra-anionic TAML ring and the phenyl ring of the aromatic substrates,which has a“pull”effect to make the electron transfer from substrates to the Fe=O moiety inefficient.展开更多
The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous s...The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous solutions. The materials synthesized in this work were characterized by chemical analysis, FT-IR (fourier transform infrared spectroscopy), XRD (X-ray powder diffraction) to confirm their properties. In order to investigate the optimum conditions for Cd(II) adsorption, the amount of Cd(ll) adsorbed by Zn-AI LDHs intercalated with EDTA (ZnAI-EDTA) under different conditions (i.e., adsorbent dosage, temperature and contact time) were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry). Adsorption isotherms of Cd(II) onto ZnA1-EDTA were measured at varying initial Cd concentrations (0.05 mg/L to 1 mg/L) under optimized conditions. The data were applied to Langmuir and Freundlich isotherms model, and well fitted by the Freundlich isotherms model. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case.展开更多
Selective hydrogenation of benzene is an atom economic green route to produce cyclohexene. The control of Zn species is the key to the catalytic performance of Ru–Zn catalysts. The influences of ZnO crystals on selec...Selective hydrogenation of benzene is an atom economic green route to produce cyclohexene. The control of Zn species is the key to the catalytic performance of Ru–Zn catalysts. The influences of ZnO crystals on selective hydrogenation of benzene were explored. A series of Ru–Zn catalysts with different Zn contents and ZnO morphologies were prepared by changing the amount of NaOH in the co-precipitation process. The catalysts were characterized by N_2 physisorption, X-ray powder diffraction(XRD), inductively coupled plasma optical emission spectrometer(ICP-OES), scanning electron microscope(SEM), temperature-programmed reduction(H_2-TPR)and Malvern laser particle size analyzer. It is found that with increasing the amount of NaOH, the Zn content first increased then decreased, and the ZnO crystals changed from relatively thicker pyramidal-shaped crystals to slimmer needle-shaped crystals. The catalyst had the highest Zn content(22.1%) and strongest interaction between ZnO crystals and Ru particles at pH 10.6 of the solution after reduction. As a result, it had the lowest activity. The activity of Ru–Zn catalysts is affected by both the Zn content and the interaction between ZnO crystals and Ru particles. The effect of reduction time was also investigated. Prolonging the reduction time caused no significant growth of ZnO crystals but the aggregation of catalyst particles and growth of Ru nanocrystals, thus resulting in the decrease of catalytic activity.展开更多
A support(denoted AM) was prepared using pseudo-boehmite and mordenite.Ni-B and NiPtB amorphous catalysts were prepared on the support by the impregnation method followed by chemical reduction with a KBH4 solution.And...A support(denoted AM) was prepared using pseudo-boehmite and mordenite.Ni-B and NiPtB amorphous catalysts were prepared on the support by the impregnation method followed by chemical reduction with a KBH4 solution.And the catalysts were characterized by X-ray diffraction(XRD),environment scanning electron microscope(ESEM),inductively coupled plasma(ICP),H2-temperature programmed reduction(H2-TPR),differential thermal analysis(DTA),and BET.Benzene hydrogenation was used as a probe reaction to evaluate the effect of addition of small quantities of Pt on the NiB/AM catalyst.The results show that Pt can promote the reduction of NiO and the formation of active sites,leading to smaller catalyst particles and better dispersion of active metal particles on the support.The catalytic activity,sulfur resistance and thermal stability were remarkably improved by Pt doping of the NiB/AM catalyst.展开更多
文摘为实现热-电-氢综合能源系统在满足多种负荷需求的同时,能有效地降低经济成本,提出了一种以经济性为目标的双层优化配置算法,研究了孤岛综合能源系统的优化配置。首先,搭建了热-电-氢混合耦合综合能源系统(the combined hydrogen,heat and power system,CHHP),然后考虑到设备购置、运维以及燃料电池、电解槽和蓄电池的老化建立了系统总目标函数。再采用上层算法为混合正余弦灰狼算法(gray wolf optimization with sine cosine algorithm,GWO-SCA),下层算法为混合整数线性规划(mixed integer linear programming,MILP)的双层优化配置算法对设备容量进行求解。最后运用算例,验证了该算法的优越性。并对系统中的电动汽车负荷考虑了多种充电方式,讨论了不同充电方式对配置结果和经济成本的影响。结果表明所提优化配置方法能够实现综合能源系统的经济、稳定运行。
基金Supported by Research Funds from Chinese Education Department (2003406)Bureau of Science and Technology of Jiangsu Province (BG2006025)
文摘A series of tungsten-substituted molybdophosphoric acids(H3PMo12-nWnO40·xH2O) were synthesized and characterized by inductive coupled plasma atomic emission spectroscopy(ICPAES),thermal gravimetry and differential scanning calorimetry(TG-DSC),Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),and FTIR pyridine adsorption.The as-prepared heteropoly acids have a Keggin type structure.The synthesis of tetrahydrofuran by reactive distillation and cyclodehydration of 1,4-butanediol was studied using the tungsten-substituted molybdophosphoric acids as catalysts.The results of catalytic test indicated that the catalytic activity increased with the increase in the substitution number(n) of tungsten atom in H3PMo12-nWnO40·xH2O and was constant as the substitution number(n) was more than 8.The catalytic activity increased with the increase in the catalyst loading and the selectivity of tetrahydrofuran was nearly 100%.
文摘Soil test for availability of nutrients and heavy metals is extensively served as a means for the evaluations of soil fertility, and environmental effects and phytotoxicity of pollutants in soils, and for the fertilizer recommendation in agricultural and environmental sciences. Therefore, great attention has been paid to the measurement of elemental availability in soil test.
基金supported by the National Natural Science Foundation of China(No.21806018 and No.21873052)the Fundamental Research Funds for the Central Universities(DUT20RC(4)002)+1 种基金Scientific Research Grant of Ningbo University(No.215-432000282)Ningbo Top Talent Project(No.215-432094250)。
文摘The divergent behavior of C-H bond oxidations of aliphatic substrates compared to those of aromatic substrates shown in Gupta’s experiment was mechanistically studied herein by means of density functional theory calculations.Our calculations reveal that such difference is caused by different reaction mechanisms between two kinds of substrates(the aliphatic cyclohexane,2,3-dimethylbutane and the aromatic toluene,ethylbenzene and cumene).For the aliphatic substrates,C-H oxidation by the oxidant Fe^(V)(O)(TAML)is a hydrogen atom transfer process;whereas for the aromatic substrates,C-H oxidation is a proton-coupled electron transfer(PCET)process with a proton transfer character on the transition state,that is,a proton-coupled electron transfer process holding a proton transfer-like transition state(PCET(PT)).This difference is caused by the strongπ-πinteractions between the tetra-anionic TAML ring and the phenyl ring of the aromatic substrates,which has a“pull”effect to make the electron transfer from substrates to the Fe=O moiety inefficient.
文摘The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous solutions. The materials synthesized in this work were characterized by chemical analysis, FT-IR (fourier transform infrared spectroscopy), XRD (X-ray powder diffraction) to confirm their properties. In order to investigate the optimum conditions for Cd(II) adsorption, the amount of Cd(ll) adsorbed by Zn-AI LDHs intercalated with EDTA (ZnAI-EDTA) under different conditions (i.e., adsorbent dosage, temperature and contact time) were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry). Adsorption isotherms of Cd(II) onto ZnA1-EDTA were measured at varying initial Cd concentrations (0.05 mg/L to 1 mg/L) under optimized conditions. The data were applied to Langmuir and Freundlich isotherms model, and well fitted by the Freundlich isotherms model. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case.
基金Supported by the National Natural Science Foundation of China(no.U1162129)
文摘Selective hydrogenation of benzene is an atom economic green route to produce cyclohexene. The control of Zn species is the key to the catalytic performance of Ru–Zn catalysts. The influences of ZnO crystals on selective hydrogenation of benzene were explored. A series of Ru–Zn catalysts with different Zn contents and ZnO morphologies were prepared by changing the amount of NaOH in the co-precipitation process. The catalysts were characterized by N_2 physisorption, X-ray powder diffraction(XRD), inductively coupled plasma optical emission spectrometer(ICP-OES), scanning electron microscope(SEM), temperature-programmed reduction(H_2-TPR)and Malvern laser particle size analyzer. It is found that with increasing the amount of NaOH, the Zn content first increased then decreased, and the ZnO crystals changed from relatively thicker pyramidal-shaped crystals to slimmer needle-shaped crystals. The catalyst had the highest Zn content(22.1%) and strongest interaction between ZnO crystals and Ru particles at pH 10.6 of the solution after reduction. As a result, it had the lowest activity. The activity of Ru–Zn catalysts is affected by both the Zn content and the interaction between ZnO crystals and Ru particles. The effect of reduction time was also investigated. Prolonging the reduction time caused no significant growth of ZnO crystals but the aggregation of catalyst particles and growth of Ru nanocrystals, thus resulting in the decrease of catalytic activity.
基金Supported by the Overseas Scholars of Heilongjiang Province of China (1151hq006)
文摘A support(denoted AM) was prepared using pseudo-boehmite and mordenite.Ni-B and NiPtB amorphous catalysts were prepared on the support by the impregnation method followed by chemical reduction with a KBH4 solution.And the catalysts were characterized by X-ray diffraction(XRD),environment scanning electron microscope(ESEM),inductively coupled plasma(ICP),H2-temperature programmed reduction(H2-TPR),differential thermal analysis(DTA),and BET.Benzene hydrogenation was used as a probe reaction to evaluate the effect of addition of small quantities of Pt on the NiB/AM catalyst.The results show that Pt can promote the reduction of NiO and the formation of active sites,leading to smaller catalyst particles and better dispersion of active metal particles on the support.The catalytic activity,sulfur resistance and thermal stability were remarkably improved by Pt doping of the NiB/AM catalyst.