The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About...The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.展开更多
The molecular dynamics (MD) simulation and the modified analytical embedded-atom method (MAEAM) were used to study the influence of a He atom on the movement of the(a/2)?110?{111} edge dislocation in Ni. First...The molecular dynamics (MD) simulation and the modified analytical embedded-atom method (MAEAM) were used to study the influence of a He atom on the movement of the(a/2)?110?{111} edge dislocation in Ni. First, the calculated Burgers vector distribution shows that the equilibrium dissociation distance (Ded) and the stacking fault energy (Esf) between two partial edge dislocations are about 25.95 ? and 108 mJ/m2, respectively. Then, the obtained formation energies (Ef) of a He atom at some different sites demonstrate that the He atom is attracted and repelled in the tension and compression regions, respectively. And the He?dislocation interaction reveals that an interstitial He atom plays a more significant role in the dislocation movement than a substitutional He atom. Finally, it is found that the movement of an interstitial He atom is apparent as the first partial dislocation bypasses and the edge dislocation offers fast-diffusion path for the migration of a He atom.展开更多
The formation mechanism for the equilateral triangle structure of the He-3(+) cluster is proposed. The curve of the total energy versus the internuclear distance R for this structure has been calculated by the method ...The formation mechanism for the equilateral triangle structure of the He-3(+) cluster is proposed. The curve of the total energy versus the internuclear distance R for this structure has been calculated by the method of a modified arrangement channel quantum mechanics. The result shows that the curve has a minimal -7.81373 a. u at R = 1.55 a(0). The binding energy of He-3(+) with respect to He+He++He was calculated to be 0.1064 a.u. (about 2.89 eV). This means that the He-3(+) cluster may be formed in the equilateral triangle structure stably by the interaction of He+ with two helium atoms.展开更多
The B-spline basis set method is used to study the properties of helium confined endohedrally at thegeometrical centre of a fullerene. The boundary conditions of the wavefunctions can be simply satisfied with thismeth...The B-spline basis set method is used to study the properties of helium confined endohedrally at thegeometrical centre of a fullerene. The boundary conditions of the wavefunctions can be simply satisfied with thismethod. From our results, the phenomenon of 'mirror collapse' is found in the case of confining helium. The interestingbehaviors of confining helium are also discussed.展开更多
The formation mechanism for the body-centered cubic structure of cluster is proposed and its total energy curve is calculated by the method of a Modified Arrangement Channel Quantum Mechanics. The energy is the funct...The formation mechanism for the body-centered cubic structure of cluster is proposed and its total energy curve is calculated by the method of a Modified Arrangement Channel Quantum Mechanics. The energy is the function of separation R between the nuclei at the center and an apex of the body-centered cubic structure. The result of the calculation shows that the curve has a minimal energy . The binding energy of with respect to was calculated to be 0.8857 a.u. This means that the cluster ofmay be formed in the body-centered cubic structure of .展开更多
The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross s...The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross section of emitted 5He is to be established. Based on the pick-up mechanism, used for calculating the formula of d, t, 3He, α emissions, the theoretical formula of double-differential cross section of 5 He is obtained, which is expressed in the form of Legendre coefficients. In the case of low incident energies, the configuration [J.S. Zhang, Science in China G47 (2004)137; J.S. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 83] is the dominant part in the reaction processes.The calculated result indicates that the forward peaked angular distribution of the composite particle emission is weaker than that of the emitted single nucleon due to pick-up nucleon from the Fermi sea. As an example, the reactions of n + 14N have been calculated, and the Legendre coefficients of d, t, 3He, α, 5He emissions are obtained respectively.The results show that the forward tendency is decided by the average momentum per nucleon in the emitted composite particles. The larger the average momentum is, the stronger the forward tendency is.展开更多
A new pulsed helium nano droplets machine has been constructed. The droplets were gener- ated by expansion of the pure helium through the cryogenic valve attached to a closed-cycle cryostat. The mean size of helium dr...A new pulsed helium nano droplets machine has been constructed. The droplets were gener- ated by expansion of the pure helium through the cryogenic valve attached to a closed-cycle cryostat. The mean size of helium droplets can be controlled between 103 and 105 helium atoms by tuning the backing pressure (10-40 bar) and temperature (10-30 K). Compared with the continuous-flow beam source, the density of droplet is at least one order of magni- tude higher, which offers the opportunity to combine the system with the commercial pulsed laser to study chemical reactions inside of the superfluid helium at ultra-low temperature. The performance for the system has been checked by studying the photodissociation of CH3I doped droplets at 252 nm with the velocity map imaging technique. The photofragments, CH3, were detected by (2+1) resonance enhanced multiphoton ionization. The speed and angular distributions derived from resulting images show clear evidence of the relaxation effect by the surrounding helium atoms. The pulsed helium droplets depletion spectroscopy was also demonstrated. The depletion spectrum of benzene doped helium droplets indicates that less than 3% depletion can be observed with the newly constructed apparatus.展开更多
In this paper,the ground state wave function of four parameters is developed and expression of the ground state level is derived for the helium atom when the radial Schrodinger equation of the helium atom is solved. T...In this paper,the ground state wave function of four parameters is developed and expression of the ground state level is derived for the helium atom when the radial Schrodinger equation of the helium atom is solved. The ground energy is respectively computed by the optimized aJgorithms of Matlab 7.0 and the Monte Carlo methods. Furthermore, the ground state wave function is obtained. Compared with the experiment value and the value with the variation calculus in reference, the results of this paper show that in the four-parameter scheme, not only the calculations become more simplified and precise, but also the radial wave function of the helium atom meets the space symmetry automatically in ground state.展开更多
The helium atom confined by a non-impenetrable spherical box, i.e., a spherical Gaussian potential well which possesses finite height and range, is studied employing the exact diagonalization method. Total energies of...The helium atom confined by a non-impenetrable spherical box, i.e., a spherical Gaussian potential well which possesses finite height and range, is studied employing the exact diagonalization method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other: in general, the energies of the states decrease and the energy intervals between states increase with the reduction of the space dimensions.展开更多
The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function ...The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.展开更多
The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary ...The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary conditions. It is shown that the obtained energy are very close to the values calculated by others. But the small differences of the expectation values of r^2n are due to the incorporated boundary conditions in proposed wave function and are expected.展开更多
Close-coupling equation and anisotropic potential developed in our previous research are applied to HE-SHe (4He, 6He, 8He,10He) collision system, and partial cross sections (PCSs) at the incident energy of 40 me V...Close-coupling equation and anisotropic potential developed in our previous research are applied to HE-SHe (4He, 6He, 8He,10He) collision system, and partial cross sections (PCSs) at the incident energy of 40 me V are calculated. By analyzing the differences of these PCSs, change rules of PCSs with the increase of partial wave number, and with the change of the mass of isotope substitution helium atom are obtained. The results show that excitation PCSs converge faster than elastic PCSs for collision energy and each of systems considered here. Also excitation PCSs converge more rapidly for high-excited states. Tail effect is present only in elastic scattering and low-excited states but not in high- excited states. With the increase of the mass of isotope substitution helium atom, converging speed of elastic, total inelastic, and state-to-state excitation PCS slows down, and the maxima of these PCSs undergoes a regular change.展开更多
In a simple hadronie model, the two-photon exchange contributions to the single spin asymmetries for the nucleon and the 3He are estimated. The results show that the elastic contributions of two-photon exchange to the...In a simple hadronie model, the two-photon exchange contributions to the single spin asymmetries for the nucleon and the 3He are estimated. The results show that the elastic contributions of two-photon exchange to the single spin asymmetries for the nucleon are rather small while those for the 3He are relatively large. Besides the strong angular dependence, the two-photon contributions to the single transfer. spin asymmetry for the 3He are very sensitive to the momentum展开更多
Odd-Even Periodic Table of Chemical Elements designed by the authors settles the position of Hydrogen and Helium, Additionally, it yields no exceptional arrangements for neither the Lanthanides, Actinide and Super Act...Odd-Even Periodic Table of Chemical Elements designed by the authors settles the position of Hydrogen and Helium, Additionally, it yields no exceptional arrangements for neither the Lanthanides, Actinide and Super Actinides nor the six empty spots and the controversy on the positions of hydrogen and helium has been settled. It plays an important role in comparing the stability of nucleons and predicting the ordinal of the terminal element.展开更多
For the qualification of TBM design, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles. The main characteristics of the loop and preliminary conceptual design are ...For the qualification of TBM design, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles. The main characteristics of the loop and preliminary conceptual design are described in the paper.展开更多
The paper presents a study on the effects of low intensity laser irradiation on morphological changes in plants sprouted from maize hybrid seeds (two hybrids) and wheat seeds. Pre-sowing laser irradiation treatment ...The paper presents a study on the effects of low intensity laser irradiation on morphological changes in plants sprouted from maize hybrid seeds (two hybrids) and wheat seeds. Pre-sowing laser irradiation treatment on the seeds was done, intervals from 10 s to 15 min (approximately), by using a diode laser output power of 12 mW at 904 nm wavelength or with He-Ne laser with output power of 50 mW and 632.8 nm wavelength. Before irradiation seeds were divided into groups (wet and dry, and then in subgroups-irradiated or control groups). We used maize hybrids, Amilacea and Identata and wheat (Triticum aestivum). The reflection coefficient in visible range was done for maize varieties. Obtained data show the influence of laser beam to better plant growth. Better results are obtained for dry seed irradiation than for wet. In order to investigate the effect of laser beam and in general to clarify a lot of unsolved photo processes related to bioorganisms at macroscopic and microscopic levels, some optical constants of selected plant families were researched. At the same time, the influence of laser beams of common wavelengths to the selected plants was monitored. Morphological processes of plants (seeds and leaves) irradiated under different conditions and plant growing dynamics were contemplated. The definite correlation analyses of obtained results were made, clearly speaking about the influence of small-dose radiation to characteristics (quantitative and other genetic, bio-stimulating effects) of future plant growth.展开更多
In recent years, a new approach named the spherical tokamak or spherical torus (ST) in the magnetic fusion research has made remarkable progress, parallel to the tokamak development including the international therm...In recent years, a new approach named the spherical tokamak or spherical torus (ST) in the magnetic fusion research has made remarkable progress, parallel to the tokamak development including the international thermonuclear experimental reactor (ITER) projectTM. In ST experiments, magnetohydrodynamics stable high beta value (the ratio of the plasma pressure to the toroidal magnetic pressure) up to 50% has been routinely obtained. The confinement scaling for ST, though being less-confident compared to the database of tokamaks, seems at least to be as good as the tokamak.展开更多
Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method.To be specific,precise energy ...Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method.To be specific,precise energy eigenvalues of bound 1sns(~1S^e)(n=1-6)states and the resonance parameters i.e.positions and widths of^lS^e states due to 2sns(n=2-5)and 2pnp(n=2-5)configurations of confined helium below N=2 ionization threshold of He^+have been estimated.The two-parameter(Depth and Width)finite oscillator potential is used to represent the confining potential due to the quantum dot.It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size.It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters.A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here.展开更多
文摘The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.
基金Project(ZL1405)supported by the Talent Project of Lingnan Normal University,China
文摘The molecular dynamics (MD) simulation and the modified analytical embedded-atom method (MAEAM) were used to study the influence of a He atom on the movement of the(a/2)?110?{111} edge dislocation in Ni. First, the calculated Burgers vector distribution shows that the equilibrium dissociation distance (Ded) and the stacking fault energy (Esf) between two partial edge dislocations are about 25.95 ? and 108 mJ/m2, respectively. Then, the obtained formation energies (Ef) of a He atom at some different sites demonstrate that the He atom is attracted and repelled in the tension and compression regions, respectively. And the He?dislocation interaction reveals that an interstitial He atom plays a more significant role in the dislocation movement than a substitutional He atom. Finally, it is found that the movement of an interstitial He atom is apparent as the first partial dislocation bypasses and the edge dislocation offers fast-diffusion path for the migration of a He atom.
文摘The formation mechanism for the equilateral triangle structure of the He-3(+) cluster is proposed. The curve of the total energy versus the internuclear distance R for this structure has been calculated by the method of a modified arrangement channel quantum mechanics. The result shows that the curve has a minimal -7.81373 a. u at R = 1.55 a(0). The binding energy of He-3(+) with respect to He+He++He was calculated to be 0.1064 a.u. (about 2.89 eV). This means that the He-3(+) cluster may be formed in the equilateral triangle structure stably by the interaction of He+ with two helium atoms.
文摘The B-spline basis set method is used to study the properties of helium confined endohedrally at thegeometrical centre of a fullerene. The boundary conditions of the wavefunctions can be simply satisfied with thismethod. From our results, the phenomenon of 'mirror collapse' is found in the case of confining helium. The interestingbehaviors of confining helium are also discussed.
基金The project supported by National Natural Science Foundation of China(Grant No.19974027)the Foundation of Sichuan Provincial Education Committee(Grant No.01LB04)
文摘The formation mechanism for the body-centered cubic structure of cluster is proposed and its total energy curve is calculated by the method of a Modified Arrangement Channel Quantum Mechanics. The energy is the function of separation R between the nuclei at the center and an apex of the body-centered cubic structure. The result of the calculation shows that the curve has a minimal energy . The binding energy of with respect to was calculated to be 0.8857 a.u. This means that the cluster ofmay be formed in the body-centered cubic structure of .
文摘The probability of 5He particle emission has been affirmed theoretically [J.S. Zhang, Science in China G47 (2004) 137]. In order to describe the 5He emission, the theoretical formula of the double-differential cross section of emitted 5He is to be established. Based on the pick-up mechanism, used for calculating the formula of d, t, 3He, α emissions, the theoretical formula of double-differential cross section of 5 He is obtained, which is expressed in the form of Legendre coefficients. In the case of low incident energies, the configuration [J.S. Zhang, Science in China G47 (2004)137; J.S. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 83] is the dominant part in the reaction processes.The calculated result indicates that the forward peaked angular distribution of the composite particle emission is weaker than that of the emitted single nucleon due to pick-up nucleon from the Fermi sea. As an example, the reactions of n + 14N have been calculated, and the Legendre coefficients of d, t, 3He, α, 5He emissions are obtained respectively.The results show that the forward tendency is decided by the average momentum per nucleon in the emitted composite particles. The larger the average momentum is, the stronger the forward tendency is.
基金The authors would like to thank Dr. Ze-feng Ren for the assistance with the design at the early stage, and Prof. Andrey Vilesov for helpful discussions. This work was supported by the Startup Grant of Dalian In- stitute of Chemical Physics, one Hundred Talents Pro- gram of Chinese Academy of Sciences, the Knowledge Innovation Program of Chinese Academy of Sciences, and the National Natural Science Foundation of China (No.21073187).
文摘A new pulsed helium nano droplets machine has been constructed. The droplets were gener- ated by expansion of the pure helium through the cryogenic valve attached to a closed-cycle cryostat. The mean size of helium droplets can be controlled between 103 and 105 helium atoms by tuning the backing pressure (10-40 bar) and temperature (10-30 K). Compared with the continuous-flow beam source, the density of droplet is at least one order of magni- tude higher, which offers the opportunity to combine the system with the commercial pulsed laser to study chemical reactions inside of the superfluid helium at ultra-low temperature. The performance for the system has been checked by studying the photodissociation of CH3I doped droplets at 252 nm with the velocity map imaging technique. The photofragments, CH3, were detected by (2+1) resonance enhanced multiphoton ionization. The speed and angular distributions derived from resulting images show clear evidence of the relaxation effect by the surrounding helium atoms. The pulsed helium droplets depletion spectroscopy was also demonstrated. The depletion spectrum of benzene doped helium droplets indicates that less than 3% depletion can be observed with the newly constructed apparatus.
基金The project supported by National Natural Science Foundation of China under Grant No. 10147207, the Natural Science Foundation of Chongqing Science and Technology Committee under Grant No. 2005BB8267, and the Fundamental Research Foundation of Chongqing Education Committee under Grant No. KJ060813
文摘In this paper,the ground state wave function of four parameters is developed and expression of the ground state level is derived for the helium atom when the radial Schrodinger equation of the helium atom is solved. The ground energy is respectively computed by the optimized aJgorithms of Matlab 7.0 and the Monte Carlo methods. Furthermore, the ground state wave function is obtained. Compared with the experiment value and the value with the variation calculus in reference, the results of this paper show that in the four-parameter scheme, not only the calculations become more simplified and precise, but also the radial wave function of the helium atom meets the space symmetry automatically in ground state.
基金The project supported by National Natural Science Foundation of China under Grant No.10475021
文摘The helium atom confined by a non-impenetrable spherical box, i.e., a spherical Gaussian potential well which possesses finite height and range, is studied employing the exact diagonalization method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other: in general, the energies of the states decrease and the energy intervals between states increase with the reduction of the space dimensions.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475021 and the Natural Science Foundation of Guangdong Province under Grant No. 04009519
文摘The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.
文摘The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary conditions. It is shown that the obtained energy are very close to the values calculated by others. But the small differences of the expectation values of r^2n are due to the incorporated boundary conditions in proposed wave function and are expected.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10676025 and 10974139
文摘Close-coupling equation and anisotropic potential developed in our previous research are applied to HE-SHe (4He, 6He, 8He,10He) collision system, and partial cross sections (PCSs) at the incident energy of 40 me V are calculated. By analyzing the differences of these PCSs, change rules of PCSs with the increase of partial wave number, and with the change of the mass of isotope substitution helium atom are obtained. The results show that excitation PCSs converge faster than elastic PCSs for collision energy and each of systems considered here. Also excitation PCSs converge more rapidly for high-excited states. Tail effect is present only in elastic scattering and low-excited states but not in high- excited states. With the increase of the mass of isotope substitution helium atom, converging speed of elastic, total inelastic, and state-to-state excitation PCS slows down, and the maxima of these PCSs undergoes a regular change.
文摘In a simple hadronie model, the two-photon exchange contributions to the single spin asymmetries for the nucleon and the 3He are estimated. The results show that the elastic contributions of two-photon exchange to the single spin asymmetries for the nucleon are rather small while those for the 3He are relatively large. Besides the strong angular dependence, the two-photon contributions to the single transfer. spin asymmetry for the 3He are very sensitive to the momentum
文摘Odd-Even Periodic Table of Chemical Elements designed by the authors settles the position of Hydrogen and Helium, Additionally, it yields no exceptional arrangements for neither the Lanthanides, Actinide and Super Actinides nor the six empty spots and the controversy on the positions of hydrogen and helium has been settled. It plays an important role in comparing the stability of nucleons and predicting the ordinal of the terminal element.
文摘For the qualification of TBM design, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles. The main characteristics of the loop and preliminary conceptual design are described in the paper.
文摘The paper presents a study on the effects of low intensity laser irradiation on morphological changes in plants sprouted from maize hybrid seeds (two hybrids) and wheat seeds. Pre-sowing laser irradiation treatment on the seeds was done, intervals from 10 s to 15 min (approximately), by using a diode laser output power of 12 mW at 904 nm wavelength or with He-Ne laser with output power of 50 mW and 632.8 nm wavelength. Before irradiation seeds were divided into groups (wet and dry, and then in subgroups-irradiated or control groups). We used maize hybrids, Amilacea and Identata and wheat (Triticum aestivum). The reflection coefficient in visible range was done for maize varieties. Obtained data show the influence of laser beam to better plant growth. Better results are obtained for dry seed irradiation than for wet. In order to investigate the effect of laser beam and in general to clarify a lot of unsolved photo processes related to bioorganisms at macroscopic and microscopic levels, some optical constants of selected plant families were researched. At the same time, the influence of laser beams of common wavelengths to the selected plants was monitored. Morphological processes of plants (seeds and leaves) irradiated under different conditions and plant growing dynamics were contemplated. The definite correlation analyses of obtained results were made, clearly speaking about the influence of small-dose radiation to characteristics (quantitative and other genetic, bio-stimulating effects) of future plant growth.
文摘In recent years, a new approach named the spherical tokamak or spherical torus (ST) in the magnetic fusion research has made remarkable progress, parallel to the tokamak development including the international thermonuclear experimental reactor (ITER) projectTM. In ST experiments, magnetohydrodynamics stable high beta value (the ratio of the plasma pressure to the toroidal magnetic pressure) up to 50% has been routinely obtained. The confinement scaling for ST, though being less-confident compared to the database of tokamaks, seems at least to be as good as the tokamak.
基金Financial Support under Grant No.37(3)/14/27/2014-BRNS from the Department of Atomic Energy,BRNS,Government of IndiaFinancial Support under Grant No.PSW-160/14-15(ERO)from University Grants Commission,Government of India
文摘Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method.To be specific,precise energy eigenvalues of bound 1sns(~1S^e)(n=1-6)states and the resonance parameters i.e.positions and widths of^lS^e states due to 2sns(n=2-5)and 2pnp(n=2-5)configurations of confined helium below N=2 ionization threshold of He^+have been estimated.The two-parameter(Depth and Width)finite oscillator potential is used to represent the confining potential due to the quantum dot.It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size.It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters.A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here.