To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective...To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.展开更多
In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations...In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.展开更多
The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride ...The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.展开更多
Gelatin extracted from the body wall of the sea cucumber (Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-- 1700 Da was produced using an ultrafiltrat...Gelatin extracted from the body wall of the sea cucumber (Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-- 1700 Da was produced using an ultrafiltration membrane bioreaetor system. Chemiluminescence analysis revealed that LMW-GH scavenges high free radicals in a concentration-dependent manner; IC50 value for superoxide and hydroxyl radicals was 442 and 285 μgmL-1, respectively. LMW-GH exhibited excellent inhibitory characteristics against melanin synthesis and tyrosinase activity in B16 cells. Furthermore, LMW-GH notably increased in- traeellular glutathione (GSH), which in turn suppressed melanogenesis. LMW-GH performs antioxidation activity, holding the potential of being used as a valuable ingredient in function foods, cosmetics and pharmaceuticals or nutriceuticals.展开更多
Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from...Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from the Ningtiaota, Jianxin, and Shigetai coal mines. Free radical concentrations at less than 120 ℃ were investigated by electron spin resonance experiments while the thermogravimetric experiments were conducted to analyze apparent activation energies. In addition, Fourier transform infrared spectroscopy was employed to study the spectrum of functional groups generated in coal. The results indicated that, in decreasing order, the apparent activation energies were Shigetai 〉Jianxin 〉 Ningtiaota, indicating that, from 50 to 120 ℃, the Ningtiaota coal sample most easily absorbed and reacted with oxygen while the most resistant was the Shigetai coal sample. Free radical concentrations and line heights increased with increased temperature, and the line width and Lande factor showed irregular fluctuations. Functional group variations were different among these coals, and the phenol and alcohol-associated OHs, carboxyls, and aromatic ring double bonds might have had a major impact on free radical concentrations. These results were meaningful for better consideration and management of coal oxidation at low temperatures.展开更多
[ Objective] To prepare peanut bioactive peptides and analyze their molecular weight composition and antioxidant activity. [ Method ] The dialysis bag of 8.0, 3.5 and 1.0 kD were used to classify the hydrolyzate deriv...[ Objective] To prepare peanut bioactive peptides and analyze their molecular weight composition and antioxidant activity. [ Method ] The dialysis bag of 8.0, 3.5 and 1.0 kD were used to classify the hydrolyzate derived from alcalase and flavourzyme, peanut bioactive poptides of differ-ent molecular weight were obtained and then their scavenging capacity of free radicals was measured. The molecular weight composition was stud-ied by Tricine-SDS-PAGE.[Result] The content of peptides 〈 1.0 kD were 76.21% and 83.42% in the total hydrolyzate from alcalase and fla-vourzyme respectively. All hydrolyzate with different molecular grades showed free radical scavenging capacity, which was increased with the reduc- tion of molecular mass. The peptides 〈 1.0 kD exhibited higher radical scavenging capacity of (87.41 ±0.66) % (alcalase) and (67.88 ±0.48)% ( flavourzyme), respectively. [ Conclusion] Peanut bioactive peptides had strong effect of antioxidant capacity, especially that 〈 1.0 kD, which had great prospect.展开更多
Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activatio...Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R-H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R-H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O-O bond length of -1.45 A, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold.展开更多
Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on ...Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis.展开更多
Transition metal alloy electrocatalysts have sparked intense interest for their use in oxygen reduction reaction(ORR).However,there is almost no corresponding research on the alloy active sites.In this study,CoNi allo...Transition metal alloy electrocatalysts have sparked intense interest for their use in oxygen reduction reaction(ORR).However,there is almost no corresponding research on the alloy active sites.In this study,CoNi alloy nanoparticles embedded in bamboo-like N-doped carbon nanotubes(CoNi-NCTs)as catalysts constructed by a facile pyrolysis of Prussian blue analogs were investigated.The density functional theory calculation reveals that the oxygen molecules are more easily adsorbed on the Ni sites in these catalysts,while the Co sites favor the formation of OOH★intermediates during ORR.In addition,the cooperation of the CoNi alloys with the N-doped carbon benefits electron transfer and promotes electrocatalytic activity.The optimized CoNi-NCT shows remarkable ORR catalytic activity with an half-wave potential(E1/2)of 0.83 V,an onset potential(Eonset)of 0.97 V,and superior durability,all of which surpass the commercial Pt/C catalysts.The assembled zinc-air battery delivers a small charge/discharge voltage gap of 0.86 V at 10 mA cm^(-2),a high-power density of 167 mW cm^(-2),and good stability(running stably over 900 cycles).展开更多
Luminescent carbon nanoparticles (CNPs) are newcomers to the world of nanomaterials and have shown great impact in health and environmental applications as well as being promising building blocks for future nanodevi...Luminescent carbon nanoparticles (CNPs) are newcomers to the world of nanomaterials and have shown great impact in health and environmental applications as well as being promising building blocks for future nanodevices because of their fascinating photoluminescence and potential to serve as nontoxic replacements for traditional heavy-metals-based quantum dots. Herein, fluorescent CNPs have been prepared from candle soot by re fluxing with HNO3 and subsequently separated by a single centrifugation. The CNPs can be represented by the empirical formula C1Ho.677Oo.586No.o15Nao.069, and have a size of 20-100 nm, height of 3.0 nm, lifetime of 7.31 ns + 0.06 ns and quantum yield of -1.7%. Further studies demonstrate that: (1)the as-prepared CNPs exhibit excellent stability in biological media and their luminescence intensity does not change with ionic strength or pH in the physiological and pathological range of pH 4.5-8.8; (2) CNPs can act as electron donors and transporters and porphyrin can assemble onto CNPs through electrostatic and ^-stacking interactions to form porphyrin-CNPs supramolecular composites; (3)CNPs have strong intrinsic peroxidase-like activity. Based on this intrinsic peroxidase activity, a simple, cheap, and highly selective and sensitive colorimetric and quantitative assay has been developed for the detection of glucose levels. This assay has been used to analyze real samples, such as diluted blood and fruit juice.展开更多
Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization o...Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization of inert C-H bonds, but their mechanisms remain poorly understood. In the present study the several possible mechanisms including electrophilic aro- matic substitution, concerted metalation-deprotonation (CMD), Friedel-Crafts mechanism, radical mechanism, and proton- coupled electron transfer have been theoretically examined. Cu(II)-assisted CMD mechanism is found to be the most feasible for both C-O and C-N cyclizations. This mechanism includes three steps, i.e. CMD with Cu(II), oxidation of the Cu(II) inter- mediate, and reductive elimination from Cu(III). Our calculations show that Cu(II) mediates the C-H activation through an six-membered ring CMD transition state similar to that proposed for many Pd-catalyzed C-H activation reactions. It is also in- teresting to find that the rate-limiting steps are different for C-N and C-O cyclizations: for the former it is concerted metalation-deprotonation with Cu(II), whereas for the latter it is reductive elimination from Cu(III). The above conclusions are consistent with the experimental kinetic isotope effects (1.0 and 2.1 for C-O and C-N cyclizations, respectively), substituent effects, and the reactions under O2-free conditions.展开更多
The facet-dependent photocatalytic performance of TiO_2 nanocrystals has been extensively investigated due to their promising applications in renewable energy and environmental fields. However, the intrinsic distincti...The facet-dependent photocatalytic performance of TiO_2 nanocrystals has been extensively investigated due to their promising applications in renewable energy and environmental fields. However, the intrinsic distinction in the photocatalytic oxidation activities between the {001}and {101} facets of anatase TiO_2 nanocrystals is still unclear and under debate. In this work, a simple photoelectrochemical method was employed to meaningfully quantify the intrinsic photocatalytic activities of {001} and{101} faceted TiO_2 nanocrystal photoanodes. The effective surface areas of photoanodes with different facets were measured based on the monolayer adsorption of phthalic acid on TiO_2 photoanode surface by an ex situ photoelectrochemical method, which were used to normalize the photocurrents obtained from different faceted photoanodes for meaningful comparison of their photocatalytic activities. The results demonstrated that the {001} facets of anatase TiO_2 nanocrystals exhibited much better photocatalytic activity than that of {101} facets of anatase TiO_2 nanocrystals toward photocatalytic oxidation of water and organic compounds with different functional groups(e.g.,–OH, –CHO, –COOH). Furthermore, the instantaneous kinetic constants of photocatalytic oxidation of pre-adsorbates on {001} faceted anatase TiO_2 photoanode are obviously greater than those obtained at {101} faceted anatase TiO_2 photoanode, further verifying the higher photocatalytic activity of {001} facets of anatase TiO_2.This work provided a facile photoelectrochemical method to quantitatively determine the photocatalytic oxidation activity of specific exposed crystal facets of a photocatalyst, which would be helpful to uncover and meaningfully compare the intrinsic photocatalytic activities of different exposed crystal facets of a photocatalyst.展开更多
Polyhydroquinone (PHQ) is a redox-active polymer with quinone/hydroquinone redox active units in the main chain and may have potential applications as a mediator in biosensors and biofuel cells. By the oxidative polym...Polyhydroquinone (PHQ) is a redox-active polymer with quinone/hydroquinone redox active units in the main chain and may have potential applications as a mediator in biosensors and biofuel cells. By the oxidative polymerization of hydroquinone (HQ), PHQ can be easily synthesized, but the reaction lacks control over the structure of the product. Deoxycholic acid (DCA) was introduced as a supramolecular template to control the reaction. The reaction rate is 14 times of that in deionized water and twice of that in buffer. The DCA template increases not only the reaction rate, but also the molecular weight of the polymer obtained. The template effect of DCA was attributed to the supramolecular assemblies of DCA formed in the solution. Cyclic voltammetry study indicated the resulting PHQ was redox-active. While the supramolecular assemblies of DCA provided a template for the oxidative polymerization of HQ, the protons released as a by-product of the oxidative polymerization of HQ in turn enhanced the self-assembly of DCA. As a result, DCA microfibers form and separate out of the solution.展开更多
Reaction of [Mn(TTF-salphen)][OAc] (TTF-salphen2=2,2'-((2-(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)-1,3-benzodithiole- 5,6-diyl)bis(nitrilomethylidyne)bis(pbenolate)dianion) and the cyanometalate bui...Reaction of [Mn(TTF-salphen)][OAc] (TTF-salphen2=2,2'-((2-(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)-1,3-benzodithiole- 5,6-diyl)bis(nitrilomethylidyne)bis(pbenolate)dianion) and the cyanometalate building blocks [n-Bu4N][(Tp)Fe(CN)3] (Tp =Tris(pyrazolyl)hydroborate) or [n-Bu4N][Ru(salen)(CN)2] (salen2 =N,N'-ethylenebis(salicylideneimine)dianion) resulted in the formation of two redox-active complexes, the dinuclear heterometallic complex [(Tp)Fe(CN)3Mn(TTF-salphen)'CH3OH] (1) and the one dimensional complex [Ru(salen)(CN)2Mn(TTF-salphen)]n (2). Both complexes were characterized by X-ray crystallography and solid state electrochemistry, in addition to static and dynamic magnetic measurements. Antiferromagnetic couplings are found to be operative between metal ion centers bridged by cyanide in both complexes. Complex 1 exhibited field-induced SMM behavior with an energy barrier of 13.8 K. The introduction of the redox-active TTF unit into cyanidebridged complexes with interesting magnetic properties renders them promising candidates for the construction of new hybrid inorganic-organic materials.展开更多
文摘To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.
文摘In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20443002) and the Science Foundations of Henan Province for 0utstanding Young Scientists (No.0612002600)
文摘The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.
基金supported by the National High-Tech Research and Development Project of China (No.2007AA091805)National Natural Science Foundation of China (Nos.30871944 and 30972284)National Key Technology Research and Development Program of China (No.2008BAD94B05)
文摘Gelatin extracted from the body wall of the sea cucumber (Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-- 1700 Da was produced using an ultrafiltration membrane bioreaetor system. Chemiluminescence analysis revealed that LMW-GH scavenges high free radicals in a concentration-dependent manner; IC50 value for superoxide and hydroxyl radicals was 442 and 285 μgmL-1, respectively. LMW-GH exhibited excellent inhibitory characteristics against melanin synthesis and tyrosinase activity in B16 cells. Furthermore, LMW-GH notably increased in- traeellular glutathione (GSH), which in turn suppressed melanogenesis. LMW-GH performs antioxidation activity, holding the potential of being used as a valuable ingredient in function foods, cosmetics and pharmaceuticals or nutriceuticals.
基金supported by the Key Projects of the National Natural Science Foundation of China (Nos. 51504187, 51774233, and 51704226)Shaanxi Province Industrial Science and Technology Research Project (No. 2016GY-192)the China Postdoctoral Science Foundation (No. 2016-M-590963)
文摘Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from the Ningtiaota, Jianxin, and Shigetai coal mines. Free radical concentrations at less than 120 ℃ were investigated by electron spin resonance experiments while the thermogravimetric experiments were conducted to analyze apparent activation energies. In addition, Fourier transform infrared spectroscopy was employed to study the spectrum of functional groups generated in coal. The results indicated that, in decreasing order, the apparent activation energies were Shigetai 〉Jianxin 〉 Ningtiaota, indicating that, from 50 to 120 ℃, the Ningtiaota coal sample most easily absorbed and reacted with oxygen while the most resistant was the Shigetai coal sample. Free radical concentrations and line heights increased with increased temperature, and the line width and Lande factor showed irregular fluctuations. Functional group variations were different among these coals, and the phenol and alcohol-associated OHs, carboxyls, and aromatic ring double bonds might have had a major impact on free radical concentrations. These results were meaningful for better consideration and management of coal oxidation at low temperatures.
基金Supported by 2011 Agriculture Science and Technology Achievements Transformation Fund of the Ministry of Science and Technology(2011C3002001)
文摘[ Objective] To prepare peanut bioactive peptides and analyze their molecular weight composition and antioxidant activity. [ Method ] The dialysis bag of 8.0, 3.5 and 1.0 kD were used to classify the hydrolyzate derived from alcalase and flavourzyme, peanut bioactive poptides of differ-ent molecular weight were obtained and then their scavenging capacity of free radicals was measured. The molecular weight composition was stud-ied by Tricine-SDS-PAGE.[Result] The content of peptides 〈 1.0 kD were 76.21% and 83.42% in the total hydrolyzate from alcalase and fla-vourzyme respectively. All hydrolyzate with different molecular grades showed free radical scavenging capacity, which was increased with the reduc- tion of molecular mass. The peptides 〈 1.0 kD exhibited higher radical scavenging capacity of (87.41 ±0.66) % (alcalase) and (67.88 ±0.48)% ( flavourzyme), respectively. [ Conclusion] Peanut bioactive peptides had strong effect of antioxidant capacity, especially that 〈 1.0 kD, which had great prospect.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2011CB932400), the National Natural Science Foundation of China (No. 21543005), the China Postdoctoral Science Foundation (No. 2014M562391), and the Fundamental Research Funds for the Central Universities (No. xjj2014064). The calculations were performed by using supercomputers at the Computer Network Information Center, Chinese Academy of Sciences, Tsinghua National Laboratory for Information Science and Technology, and the Shanghai Supercomputing Center.
文摘Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R-H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R-H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O-O bond length of -1.45 A, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold.
基金supported by the National Natural Science Foundation of China(51902121,52073110,22071072,51872107,21975090,and 21801086)the Fundamental Research Funds for the Central Universities of China(2662018QD011,2662018PY052,and 2662019PY023)the Natural Science Foundation of Hubei Province(2019CFB322)。
文摘Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis.
基金the National Key R&D Program of China(2018YFE0201704)the National Natural Science Foundation of China(21771059,21631004 and 91961111)the Natural Science Foundation of Heilongjiang Province(YQ2019B007)。
文摘Transition metal alloy electrocatalysts have sparked intense interest for their use in oxygen reduction reaction(ORR).However,there is almost no corresponding research on the alloy active sites.In this study,CoNi alloy nanoparticles embedded in bamboo-like N-doped carbon nanotubes(CoNi-NCTs)as catalysts constructed by a facile pyrolysis of Prussian blue analogs were investigated.The density functional theory calculation reveals that the oxygen molecules are more easily adsorbed on the Ni sites in these catalysts,while the Co sites favor the formation of OOH★intermediates during ORR.In addition,the cooperation of the CoNi alloys with the N-doped carbon benefits electron transfer and promotes electrocatalytic activity.The optimized CoNi-NCT shows remarkable ORR catalytic activity with an half-wave potential(E1/2)of 0.83 V,an onset potential(Eonset)of 0.97 V,and superior durability,all of which surpass the commercial Pt/C catalysts.The assembled zinc-air battery delivers a small charge/discharge voltage gap of 0.86 V at 10 mA cm^(-2),a high-power density of 167 mW cm^(-2),and good stability(running stably over 900 cycles).
基金This project was supported by the 973 Project (No. 2011CB936004), the National Natural Science Foundation of China (NSFC) (Nos. 20831003, 90813001, 20833006, and 90913007) and Funds from the Chinese Academy of Sciences.
文摘Luminescent carbon nanoparticles (CNPs) are newcomers to the world of nanomaterials and have shown great impact in health and environmental applications as well as being promising building blocks for future nanodevices because of their fascinating photoluminescence and potential to serve as nontoxic replacements for traditional heavy-metals-based quantum dots. Herein, fluorescent CNPs have been prepared from candle soot by re fluxing with HNO3 and subsequently separated by a single centrifugation. The CNPs can be represented by the empirical formula C1Ho.677Oo.586No.o15Nao.069, and have a size of 20-100 nm, height of 3.0 nm, lifetime of 7.31 ns + 0.06 ns and quantum yield of -1.7%. Further studies demonstrate that: (1)the as-prepared CNPs exhibit excellent stability in biological media and their luminescence intensity does not change with ionic strength or pH in the physiological and pathological range of pH 4.5-8.8; (2) CNPs can act as electron donors and transporters and porphyrin can assemble onto CNPs through electrostatic and ^-stacking interactions to form porphyrin-CNPs supramolecular composites; (3)CNPs have strong intrinsic peroxidase-like activity. Based on this intrinsic peroxidase activity, a simple, cheap, and highly selective and sensitive colorimetric and quantitative assay has been developed for the detection of glucose levels. This assay has been used to analyze real samples, such as diluted blood and fruit juice.
基金the financial support from the National Basic Research Program of China (973 program, 2012CB215306)the National Natural Science Foundation of China (NSFC, 20832004, 20972148)CAS(KJCX2-EW-J02)
文摘Intramolecular ortho-C-H activation and C-N/C-O cyclizations of phenyl amidines and amides have recently been achieved under Cu catalysis. These reactions provide important examples of Cu-catalyzed functionalization of inert C-H bonds, but their mechanisms remain poorly understood. In the present study the several possible mechanisms including electrophilic aro- matic substitution, concerted metalation-deprotonation (CMD), Friedel-Crafts mechanism, radical mechanism, and proton- coupled electron transfer have been theoretically examined. Cu(II)-assisted CMD mechanism is found to be the most feasible for both C-O and C-N cyclizations. This mechanism includes three steps, i.e. CMD with Cu(II), oxidation of the Cu(II) inter- mediate, and reductive elimination from Cu(III). Our calculations show that Cu(II) mediates the C-H activation through an six-membered ring CMD transition state similar to that proposed for many Pd-catalyzed C-H activation reactions. It is also in- teresting to find that the rate-limiting steps are different for C-N and C-O cyclizations: for the former it is concerted metalation-deprotonation with Cu(II), whereas for the latter it is reductive elimination from Cu(III). The above conclusions are consistent with the experimental kinetic isotope effects (1.0 and 2.1 for C-O and C-N cyclizations, respectively), substituent effects, and the reactions under O2-free conditions.
基金supported by the National Natural Science Foundation of China (51372248, 51432009 and 51272255)the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, Chinathe CAS Pioneer Hundred Talents Program
文摘The facet-dependent photocatalytic performance of TiO_2 nanocrystals has been extensively investigated due to their promising applications in renewable energy and environmental fields. However, the intrinsic distinction in the photocatalytic oxidation activities between the {001}and {101} facets of anatase TiO_2 nanocrystals is still unclear and under debate. In this work, a simple photoelectrochemical method was employed to meaningfully quantify the intrinsic photocatalytic activities of {001} and{101} faceted TiO_2 nanocrystal photoanodes. The effective surface areas of photoanodes with different facets were measured based on the monolayer adsorption of phthalic acid on TiO_2 photoanode surface by an ex situ photoelectrochemical method, which were used to normalize the photocurrents obtained from different faceted photoanodes for meaningful comparison of their photocatalytic activities. The results demonstrated that the {001} facets of anatase TiO_2 nanocrystals exhibited much better photocatalytic activity than that of {101} facets of anatase TiO_2 nanocrystals toward photocatalytic oxidation of water and organic compounds with different functional groups(e.g.,–OH, –CHO, –COOH). Furthermore, the instantaneous kinetic constants of photocatalytic oxidation of pre-adsorbates on {001} faceted anatase TiO_2 photoanode are obviously greater than those obtained at {101} faceted anatase TiO_2 photoanode, further verifying the higher photocatalytic activity of {001} facets of anatase TiO_2.This work provided a facile photoelectrochemical method to quantitatively determine the photocatalytic oxidation activity of specific exposed crystal facets of a photocatalyst, which would be helpful to uncover and meaningfully compare the intrinsic photocatalytic activities of different exposed crystal facets of a photocatalyst.
基金support from the National Natural Science Foundation of China (20974049)the Ministry of Science and Technology of China (2007DFA50760)+1 种基金Tianjin Committee of Science and Technology (10JCYBJC02000)the Canada Research Chair Program
文摘Polyhydroquinone (PHQ) is a redox-active polymer with quinone/hydroquinone redox active units in the main chain and may have potential applications as a mediator in biosensors and biofuel cells. By the oxidative polymerization of hydroquinone (HQ), PHQ can be easily synthesized, but the reaction lacks control over the structure of the product. Deoxycholic acid (DCA) was introduced as a supramolecular template to control the reaction. The reaction rate is 14 times of that in deionized water and twice of that in buffer. The DCA template increases not only the reaction rate, but also the molecular weight of the polymer obtained. The template effect of DCA was attributed to the supramolecular assemblies of DCA formed in the solution. Cyclic voltammetry study indicated the resulting PHQ was redox-active. While the supramolecular assemblies of DCA provided a template for the oxidative polymerization of HQ, the protons released as a by-product of the oxidative polymerization of HQ in turn enhanced the self-assembly of DCA. As a result, DCA microfibers form and separate out of the solution.
基金supported by the National Basic Research Program of China(2011CB808704,2013CB922101)the National Natural Science Foundation of China(51173075,91022031)the Australian Research Council
文摘Reaction of [Mn(TTF-salphen)][OAc] (TTF-salphen2=2,2'-((2-(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)-1,3-benzodithiole- 5,6-diyl)bis(nitrilomethylidyne)bis(pbenolate)dianion) and the cyanometalate building blocks [n-Bu4N][(Tp)Fe(CN)3] (Tp =Tris(pyrazolyl)hydroborate) or [n-Bu4N][Ru(salen)(CN)2] (salen2 =N,N'-ethylenebis(salicylideneimine)dianion) resulted in the formation of two redox-active complexes, the dinuclear heterometallic complex [(Tp)Fe(CN)3Mn(TTF-salphen)'CH3OH] (1) and the one dimensional complex [Ru(salen)(CN)2Mn(TTF-salphen)]n (2). Both complexes were characterized by X-ray crystallography and solid state electrochemistry, in addition to static and dynamic magnetic measurements. Antiferromagnetic couplings are found to be operative between metal ion centers bridged by cyanide in both complexes. Complex 1 exhibited field-induced SMM behavior with an energy barrier of 13.8 K. The introduction of the redox-active TTF unit into cyanidebridged complexes with interesting magnetic properties renders them promising candidates for the construction of new hybrid inorganic-organic materials.