To evaluate the effect of proteolytic enzymes on the absorption of insulin in the buccal mucosa, the trichloroacetic acid (TCA) method was used to estimate the degradation of insulin under different conditions in the ...To evaluate the effect of proteolytic enzymes on the absorption of insulin in the buccal mucosa, the trichloroacetic acid (TCA) method was used to estimate the degradation of insulin under different conditions in the buccal mucosal homogenates. In vivo experiments estimating the enhancement of hypoglycaemic effect by enzyme inhibitors were also conducted. The results showed that proteolytic enzymes in the buccal mucosa were less active than in the intestine. Bacitracin, aprotinin and sodium deoxycholate could inhibit the degradation of insulin in the buccal mucosal homogenates. The degradation of insulin in buccal mucosal homogenates of normal hamsters was smaller than that of diabetic hamsters. In vivo experiments of hypoglycaemia supported the in vitro results. When given buccally, bacitracin, aprotinin and sodium deoxycholate could increase the relative pharmacological bioavailability of insulin. When co-administered with aprotinin(0.1%), bacitracin(0.5%) and sodium deoxycholate(5%), the relative pharmacological bioavailabilities of insulin were 4.84%, 6.60% and 14.95% respectively. The in vitro and in vivo results suggest that proteolytic enzymes are present in the buccal mucosa, which limit absorption of insulin. Co-administration with some enzyme inhibitors can improve the bioavailability of insulin via buccal delivery and sodium deoxycholte is more efficient than some enzyme inhibitors used for improving buccal absorption.展开更多
In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)cata...In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization.展开更多
Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadlea...Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.展开更多
Comprehensive utilization of low grade manganese?zinc compound ore containing lead and silver with a method of reductive acid leaching was studied.According to theφ?pH diagram of Mn?Zn?H2O system,Mn and Zn can be lea...Comprehensive utilization of low grade manganese?zinc compound ore containing lead and silver with a method of reductive acid leaching was studied.According to theφ?pH diagram of Mn?Zn?H2O system,Mn and Zn can be leached simultaneously in the pH range of?2to5.61.The results showed that both hydrogen peroxide and sucrose were effective reductants which could intensify the simultaneous leaching of Mn and Zn into leachate as well as enrich Pb and Ag in the residue.95.88%of Mn and99.23%of Zn were extracted when the compound ore was leached with hydrogen peroxide in sulfuric acid media,meanwhile the contents of Pb and Ag in the residue were enriched to13.21%and489.36g/t,respectively.When sucrose was used as the reductant,the leaching efficiencies of Mn and Zn separately achieved98.26%and99.62%,and contents of Pb and Ag in the residue were as high as13.92%and517.87g/t,respectively.展开更多
Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The...Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 56 μm and needle length of 100130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and T-ZnO can be obtained only at 8501 000 ℃ and total gas flow rate ranging from 40 to 250 L·h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of (preferential) growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.展开更多
Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at hig...Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals.It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification.The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio.This was proved by comparing the iron oxide content to the blending ratio.The results from FTIR are comparable with those from XRD.FTIR is an effective method for examining variation in mineral matter.展开更多
The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate ...The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These properties included PH, reactive iron (FeR), pore-water sulfate (SO:42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-l in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (Fe3S4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the Pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.展开更多
文摘To evaluate the effect of proteolytic enzymes on the absorption of insulin in the buccal mucosa, the trichloroacetic acid (TCA) method was used to estimate the degradation of insulin under different conditions in the buccal mucosal homogenates. In vivo experiments estimating the enhancement of hypoglycaemic effect by enzyme inhibitors were also conducted. The results showed that proteolytic enzymes in the buccal mucosa were less active than in the intestine. Bacitracin, aprotinin and sodium deoxycholate could inhibit the degradation of insulin in the buccal mucosal homogenates. The degradation of insulin in buccal mucosal homogenates of normal hamsters was smaller than that of diabetic hamsters. In vivo experiments of hypoglycaemia supported the in vitro results. When given buccally, bacitracin, aprotinin and sodium deoxycholate could increase the relative pharmacological bioavailability of insulin. When co-administered with aprotinin(0.1%), bacitracin(0.5%) and sodium deoxycholate(5%), the relative pharmacological bioavailabilities of insulin were 4.84%, 6.60% and 14.95% respectively. The in vitro and in vivo results suggest that proteolytic enzymes are present in the buccal mucosa, which limit absorption of insulin. Co-administration with some enzyme inhibitors can improve the bioavailability of insulin via buccal delivery and sodium deoxycholte is more efficient than some enzyme inhibitors used for improving buccal absorption.
文摘In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization.
基金The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX-406-4 KZCX1SW01 of the Chinese Academy of Sciences
文摘Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2.
基金Projects(51574284,51504293)supported by the National Natural Science Foundation of ChinaProject(2013IB020)supported by the Science and Technology Program of Yunnan Province,ChinaProject(CSUZC201606)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Comprehensive utilization of low grade manganese?zinc compound ore containing lead and silver with a method of reductive acid leaching was studied.According to theφ?pH diagram of Mn?Zn?H2O system,Mn and Zn can be leached simultaneously in the pH range of?2to5.61.The results showed that both hydrogen peroxide and sucrose were effective reductants which could intensify the simultaneous leaching of Mn and Zn into leachate as well as enrich Pb and Ag in the residue.95.88%of Mn and99.23%of Zn were extracted when the compound ore was leached with hydrogen peroxide in sulfuric acid media,meanwhile the contents of Pb and Ag in the residue were enriched to13.21%and489.36g/t,respectively.When sucrose was used as the reductant,the leaching efficiencies of Mn and Zn separately achieved98.26%and99.62%,and contents of Pb and Ag in the residue were as high as13.92%and517.87g/t,respectively.
文摘Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 56 μm and needle length of 100130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and T-ZnO can be obtained only at 8501 000 ℃ and total gas flow rate ranging from 40 to 250 L·h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of (preferential) growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.
基金Projects 2005CB217701-03 supported by the National Basic Research Program of China2005DFA60220 by the Ministry of Science and Technology of China
文摘Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals.It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification.The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio.This was proved by comparing the iron oxide content to the blending ratio.The results from FTIR are comparable with those from XRD.FTIR is an effective method for examining variation in mineral matter.
基金Project (No. 41004) supported by the Cooperative Research Center for Sustainable Tourism, Australia.
文摘The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These properties included PH, reactive iron (FeR), pore-water sulfate (SO:42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-l in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (Fe3S4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the Pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.