Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and ...Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.展开更多
An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), ...An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.展开更多
Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electr...Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm.2O.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3-2Ni(OH)2-4H2O or Ni(NO3)2-6H2O decomposition technique.展开更多
The (1-x)BaZr0.9Y0.1O3-δ(BZY)-xCe0.8Sm0.2O2-δ(SDC, x =0.1,0.3,0.5 and 0.7) composite electrolytes were prepared by combining a gel polymerization method with a ball milling. X-ray diffraction (XRD) patterns show the...The (1-x)BaZr0.9Y0.1O3-δ(BZY)-xCe0.8Sm0.2O2-δ(SDC, x =0.1,0.3,0.5 and 0.7) composite electrolytes were prepared by combining a gel polymerization method with a ball milling. X-ray diffraction (XRD) patterns show the mixture of BZY and SDC is only crystalline phase as the composite electrolyte. The relative density,grain size and total conductivity of composite electrolytes increase significantly with the increase of SDC content. The maximum conductivity of 0.1 BZY-0.9 SDC reaches 2×10^2 S·cm^-1 at 600 ℃ in wet air,which is close to the conductivity of SDC.展开更多
The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in th...The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.展开更多
A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) ...A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) is used in the chip,which comprises a 256×256 pixel array together with column amplifiers,scan array circuits,series interface,control logic and Analog-Digital Converter (ADC). With the use of smart layout design,fill factor of pixel cell is 43%. Moreover,a new method of Dynamic Digital Double Sample (DDDS) which removes Fixed Pattern Noise (FPN) is used. The CMOS image sensor chip is implemented based on the 0.35μm process of chartered by Multi-Project Wafer (MPW). This chip performs well as expected.展开更多
Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a co...Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C).展开更多
A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various h...A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet printing technique. The graphene-based patterns printed on plastic substrates demonstrated a high electrical conductivity after thermal reduction, and more importantly, they retained the same conductivity over severe bending cycles. Accordingly, flexible electric circuits and a hydrogen peroxide chemical sensor were fabricated and showed excellent performances, demonstrating the applications of this simple and practical inkjet printing technique using graphene inks. The results show that graphene materials--which can be easily produced on a large scale and possess outstanding electronic properties--have great potential for the convenient fabrication of flexible and low-cost graphene- based electronic devices, by using a simple inkjet printing technique.展开更多
Thermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers' thermal conductivity is challenging since it in...Thermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers' thermal conductivity is challenging since it involves sophisticated sample preparation methods. In this work, we present a novel method suitable for measurements of thermal conductivity of a single nanofiber. A microelectro- mechanical (MEMS) device has been designed and fabricated to perform thermal conductivity measurements on a single nanofiber. A special Si template was designed to collect and transfer individual nanofibers onto a MEMS device. Pt was deposited by a focused ion beam to reduce the effective length of a prepared nanofiber. La0.95r0.05CoO3 nanofibers with diameters of 140 run and 290 run were studied and characterized using this approach at room temperature. Measured thermal conductivities yielded values of 0.7W-m 1-K-1 and 2.1 W.m-I'K-1, respectively. Our measurements in La0.95r0.05CoO3 nanofibers confirmed that a decrease of linear dimensions has a profound effect on its thermal conductivity.展开更多
High temperature electrical and thermal transport properties,that is,electrical conductivity,Seebeck coefficient and thermal conductivity,of CdO ceramics have been investigated.Because of the good electrical propertie...High temperature electrical and thermal transport properties,that is,electrical conductivity,Seebeck coefficient and thermal conductivity,of CdO ceramics have been investigated.Because of the good electrical properties and low thermal conductivity,the dimensionless figure-of-merit ZT of the CdO ceramics reaches 0.34 at 1023 K.This value is comparable to the best reported ZT for the n-type oxide ceramic thermoelectric materials and remains as potential to be further improved by porosity controlling or nanostructuring.展开更多
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21303037), China Postdoctoral Science Foundation (No.2013M53150), and tile Fundamental Research Funds for the Central Univcrsitics (No.2012HGZY0001).
文摘Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.
文摘An electrolyte model for the solid oxide fuel cell (SOFC) with proton conducting perovskite electrolyte is developed in this study, in which four types of charge carriers including proton, oxygen vacancy (oxide ion), free electron and electron hole are taken into consideration. The electrochemical process within the SOFC with hydrogen as the fuel is theoretically analyzed. With the present model, the effects of some parameters, such as the thickness of electrolyte, operating temperature and gas composition, on the ionic transport (or gas permeation) through the electrolyte and the electrical performance, i.e., the electromotive force (EMF) and internal resistance of the cell, are investigated in detail. The theoretical results are tested partly by comparing with the experimental data obtained from SrCe0.95M0.05O3-α, (M=Yb, Y) cells.
文摘Ni-Ce0.8Sm.2O.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.8Sm.2O.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3-2Ni(OH)2-4H2O or Ni(NO3)2-6H2O decomposition technique.
基金National Natural Science Foundation of China(No.51102216)Program for the Innovative Talents of Higher Learning Institutions of Shanxi Province+1 种基金Natural Science Foundation for Young Scientists of Shanxi Province(No.2012021021-1)Shanxi Scholarship Council of China(No.2012-071)
文摘The (1-x)BaZr0.9Y0.1O3-δ(BZY)-xCe0.8Sm0.2O2-δ(SDC, x =0.1,0.3,0.5 and 0.7) composite electrolytes were prepared by combining a gel polymerization method with a ball milling. X-ray diffraction (XRD) patterns show the mixture of BZY and SDC is only crystalline phase as the composite electrolyte. The relative density,grain size and total conductivity of composite electrolytes increase significantly with the increase of SDC content. The maximum conductivity of 0.1 BZY-0.9 SDC reaches 2×10^2 S·cm^-1 at 600 ℃ in wet air,which is close to the conductivity of SDC.
文摘The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.
文摘A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) is used in the chip,which comprises a 256×256 pixel array together with column amplifiers,scan array circuits,series interface,control logic and Analog-Digital Converter (ADC). With the use of smart layout design,fill factor of pixel cell is 43%. Moreover,a new method of Dynamic Digital Double Sample (DDDS) which removes Fixed Pattern Noise (FPN) is used. The CMOS image sensor chip is implemented based on the 0.35μm process of chartered by Multi-Project Wafer (MPW). This chip performs well as expected.
基金supported by the National Natural Science Foundation of China (51672282, 21373238)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010101)
文摘Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density.However,the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity,which becomes a serious concern especially when a high rate charge/discharge capability is expected.Here,using a modified template-assisted synthesis protocol,which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process,we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control.When used as an anode material,the structurally-controlled hollow sample delivers high reversible capacity(103.7 m A h g^(-1)at 50 C)and extraordinary cycling capability especially at high charge/discharge currents(164.7 m A h g^(-1)after 500 cycles at 10 C).
基金Acknowledgements The authors gratefully acknowledge financial support from the the National Natural Science Foundation of China (Grants No. 50933003, 50902073, 50903044, and 20774047), Ministry of Science and Technology of China (Grant No. 2009AA032304, 2011CB932602), Natural Science Foundation of Tianjin City (Grant No. 08JCZDJC25300).
文摘A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet printing technique. The graphene-based patterns printed on plastic substrates demonstrated a high electrical conductivity after thermal reduction, and more importantly, they retained the same conductivity over severe bending cycles. Accordingly, flexible electric circuits and a hydrogen peroxide chemical sensor were fabricated and showed excellent performances, demonstrating the applications of this simple and practical inkjet printing technique using graphene inks. The results show that graphene materials--which can be easily produced on a large scale and possess outstanding electronic properties--have great potential for the convenient fabrication of flexible and low-cost graphene- based electronic devices, by using a simple inkjet printing technique.
文摘Thermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers' thermal conductivity is challenging since it involves sophisticated sample preparation methods. In this work, we present a novel method suitable for measurements of thermal conductivity of a single nanofiber. A microelectro- mechanical (MEMS) device has been designed and fabricated to perform thermal conductivity measurements on a single nanofiber. A special Si template was designed to collect and transfer individual nanofibers onto a MEMS device. Pt was deposited by a focused ion beam to reduce the effective length of a prepared nanofiber. La0.95r0.05CoO3 nanofibers with diameters of 140 run and 290 run were studied and characterized using this approach at room temperature. Measured thermal conductivities yielded values of 0.7W-m 1-K-1 and 2.1 W.m-I'K-1, respectively. Our measurements in La0.95r0.05CoO3 nanofibers confirmed that a decrease of linear dimensions has a profound effect on its thermal conductivity.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Hebei Province(Grant No.A2013201249)the National Natural Science Foundation of China(Grant No.51372064)
文摘High temperature electrical and thermal transport properties,that is,electrical conductivity,Seebeck coefficient and thermal conductivity,of CdO ceramics have been investigated.Because of the good electrical properties and low thermal conductivity,the dimensionless figure-of-merit ZT of the CdO ceramics reaches 0.34 at 1023 K.This value is comparable to the best reported ZT for the n-type oxide ceramic thermoelectric materials and remains as potential to be further improved by porosity controlling or nanostructuring.