期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fenton氧化与活性炭吸附深度处理高含盐难降解海上采油废水的研究 被引量:6
1
作者 杨伟 袁珊珊 +2 位作者 宋震宇 李野 张景辉 《应用化工》 CAS CSCD 2014年第11期2060-2064,共5页
采用Fenton高级氧化和活性炭吸附法处理经自然沉降、粗粒化高效聚结、分离工艺、气浮工艺、混凝沉降工艺处理后的高含盐难降解的采油废水中的COD和油污,考察了Fenton试剂的配比和活性炭吸附时间等因素的影响。结果表明,废水p H=3,Fento... 采用Fenton高级氧化和活性炭吸附法处理经自然沉降、粗粒化高效聚结、分离工艺、气浮工艺、混凝沉降工艺处理后的高含盐难降解的采油废水中的COD和油污,考察了Fenton试剂的配比和活性炭吸附时间等因素的影响。结果表明,废水p H=3,Fenton试剂配比c(H2O2)/c(COD)=2,n(H2O2)/n(Fe)=10,氧化40 min时,Fenton高级氧化对废水中COD、含油量去除效果最佳。氧化对活性炭吸附具有促进作用,吸附时间45 min,COD去除率达75%,出水COD为48.31 mg/L,含油量为1.76 mg/L,达到《辽宁省地方标准污水综合排放标准(DB 21/1627—2008)》要求。 展开更多
关键词 采油废水 FENTON氧化 活性炭吸附 COD 含油量 氧化促进作用
下载PDF
Synergistic effect of all-trans-ret inoic acid and arsenic trioxide on growth inhibition and apoptosis in human hepatoma, breast cancer, and lung cancer cells in vitro 被引量:24
2
作者 Le-Min Lin Bao-Xin Li +2 位作者 Jian-Bing Xiao Dan-Hua Lin Bao-Feng Yang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第36期5633-5637,共5页
AIM: To investigate the effect of all-trans-retinoic acid (ATRA) on arsenic trioxide (As2O3)-induced apoptosis of human hepatoma, breast cancer, and lung cancer cells in an attempt to find a better combination th... AIM: To investigate the effect of all-trans-retinoic acid (ATRA) on arsenic trioxide (As2O3)-induced apoptosis of human hepatoma, breast cancer, and lung cancer cells in an attempt to find a better combination therapy for solid tumors. METHODS: Human hepatoma cell lines HepG2, Hep3B, human breast cancer cell line MCF-7, and human lung adenocarcinoma cell line AGZY-83-a were treated with As203 together with ATRA. Cell survival fraction was determined by MTT assay, cell viability and apoptosis were measured by annexin V-fluorescein isothiocyanate (FITC) and PI staining, and intracellular glutathione (GSH) and glutathione-S-transferase (GST) activities were determined using commercial kits. RESULTS: Cytotoxicity of ATRA was low. ATRA (0.1, 1, and 10 μmol/L) could synergistically potentiate As2O3 to exert a dose-dependent inhibition of growth and to induce apoptosis in each of the cell lines. HepG2 and Hep3B with low intracellular GSH or GST activities were remarkably sensitive to As2O3 or As2O3+ATRA, while AGZY-83-a with higher GSH or GST activities was less sensitive to As2O3 or As2O3+ATRA. Treatment with 2 μmol/L As2O3 for 72 h significantly decreased intracellular GSH and GST levels in each of the cell lines, and 1 μmol/L ATRA alone reduced minimal intracellular GSH and GST levels. ATRA potentiated the effect of As2O3 on intracellular GSH levels, but intracellular GST levels were not significantly affected by the combination of As2O3 and ATRA for 72 h as compared to As2O3 alone.CONCLUSION: ATRA can strongly potentiate As2O3- induced growth-inhibition and apoptosis in each of the cell lines, and two drugs can produce a significant synergic effect. The sensitivity to As2O3 or As2O3+ATRA is inversely proportional to intracellular GSH or GST levels in each of the cell lines. The GSH redox system may be the possible mechanism by which ATRA synergistically potentiates As203 to exert a dose-dependent inhibition of growth and to induce apoptosis. 2005 The WJG Press and Elsevier Inc. All rights reserved. 展开更多
关键词 Arsenic trioxide AII-trans-retinoic acid Hepatocellular carcinoma Cancer of breast and lung GLUTATHIONE Glutathione-S-tra nsferase
下载PDF
An Investigation on Polypropylene Degradation in Supercritical Water Adding Benzoyl Peroxide
3
作者 苏磊 吴学华 +3 位作者 刘秀茹 陈丽英 陈克宇 洪时明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第6期845-848,共4页
The effect of benzoyl peroxide (BPO) on polypropylene (PP) degradation in supercritical water was investigated with the aim of developing a process for recycling of waste plastics. A series of experiments with and... The effect of benzoyl peroxide (BPO) on polypropylene (PP) degradation in supercritical water was investigated with the aim of developing a process for recycling of waste plastics. A series of experiments with and without BPO were carried out at temperatures of 653 K and 673 K under pressure about 26 MPa for 30, 75 and 120 min respectively. Products were analyzed by an Ostward-type viscometer, gas chromatography and spectrometry (GC/MS) etc. The results indicated that mean molecular weight of the samples decreased greatly along with the time elapsing or with the temperature increasing, and PP was decomposed to Miphatic and cycloparaftinic hydrocarbons but a few benzenoid hydrocarbons. By comparing the experiments with and without BPO, it was made clear that BPO is an effective additive on PP degradation in supercritical water. 展开更多
关键词 vsupercritical water polypropylene degradation benzoyl peroxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部