The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was ...The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.展开更多
The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu ...The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60℃ for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 ℃. The direct recovery rate of copper sulfate is 79.11% and the content of CuSOa·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.展开更多
In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the coolin...In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.展开更多
基金Project (2012BAC12B01) supported by the National Key Technologies R&D Program of ChinaProject (2012FJ1010) supported by Science and Technology Major Project of Hunan Province,China
文摘The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.
文摘The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60℃ for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 ℃. The direct recovery rate of copper sulfate is 79.11% and the content of CuSOa·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.
基金Supported by the Ministry of the Environment, Climate Protection and the Energy Sector, Baden-Wuettermberg
文摘In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.