Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeli...Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeling,we computationally studied the surface structures and catalytic activities of bare Cr_(2)O_(3)(001)and(012)surfaces,and two reduced(012)surfaces covered with dissociative hydrogens or oxygen vacancies.The reduction of(001)surface is much more difficult than that of(012)surface.The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion,and the hydrogenation of CO or CHO is identified as rate-determining step.Microkinetic modeling reveals that(001)surface is inactive for the reaction,and the rates of both reduced(012)surfaces(25−28 s^(-1))are about five times higher than bare(012)surface(4.3 s^(-1))at 673 K.These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.展开更多
Herein, we describe a strategy for fabricating ordered mesoporous In2O3-reduced graphene oxide(r GO)nanocomposite through ultrasonic mixing, where ordered mesoporous In2O3 nanoparticles are synthesized via the nanocas...Herein, we describe a strategy for fabricating ordered mesoporous In2O3-reduced graphene oxide(r GO)nanocomposite through ultrasonic mixing, where ordered mesoporous In2O3 nanoparticles are synthesized via the nanocasting route by using mesoporous silica as a hard template, which possess ordered mesostructure with a large surface area of 81 m2g-1, and r GO nanosheets are synthesized from graphite via graphene oxide(GO) as intermediate. After coupled with r GO, mesoporous In2O3 could maintain its ordered mesostructure. We subsequently investigate the gas-sensing properties of all the In2O3 specimens with or without r GO for different gases. The results exhibit the ordered mesoporous In2O3-r GO nanocomposite possesses significantly enhanced response to ethanol even at low concentration levels, superior over pure mesoporous In2O3 nanoparticles. Similar strategy could be extended to other ordered mesoporous metal oxide–r GO nanocomposite for improving the gas-sensing property.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.92045303)the China Postdoctoral Science Foundation(No.2020M681444).The computational resources from Sinopec Geophysical Research Institute are acknowledged.
文摘Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeling,we computationally studied the surface structures and catalytic activities of bare Cr_(2)O_(3)(001)and(012)surfaces,and two reduced(012)surfaces covered with dissociative hydrogens or oxygen vacancies.The reduction of(001)surface is much more difficult than that of(012)surface.The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion,and the hydrogenation of CO or CHO is identified as rate-determining step.Microkinetic modeling reveals that(001)surface is inactive for the reaction,and the rates of both reduced(012)surfaces(25−28 s^(-1))are about five times higher than bare(012)surface(4.3 s^(-1))at 673 K.These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.
基金supported by the National Natural Science Foundation of China(21006116,51362024)the Natural Science Foundation of Ningxia(NZ12111,NZ14010)the Prophase Research Special Project of the National Basic Research Program of China(2012CB723106)
文摘Herein, we describe a strategy for fabricating ordered mesoporous In2O3-reduced graphene oxide(r GO)nanocomposite through ultrasonic mixing, where ordered mesoporous In2O3 nanoparticles are synthesized via the nanocasting route by using mesoporous silica as a hard template, which possess ordered mesostructure with a large surface area of 81 m2g-1, and r GO nanosheets are synthesized from graphite via graphene oxide(GO) as intermediate. After coupled with r GO, mesoporous In2O3 could maintain its ordered mesostructure. We subsequently investigate the gas-sensing properties of all the In2O3 specimens with or without r GO for different gases. The results exhibit the ordered mesoporous In2O3-r GO nanocomposite possesses significantly enhanced response to ethanol even at low concentration levels, superior over pure mesoporous In2O3 nanoparticles. Similar strategy could be extended to other ordered mesoporous metal oxide–r GO nanocomposite for improving the gas-sensing property.