This paper presents a straightforward model studying the performance of a solid oxide electrolysis cell at less computational effort while is still comprehensive accounting for details of all physics involved. The mod...This paper presents a straightforward model studying the performance of a solid oxide electrolysis cell at less computational effort while is still comprehensive accounting for details of all physics involved. The model is one dimensional and can be used to optimize SOECs that have composite electrodes. It includes an average mass transfer analysis used to simulate concentration polarization, activation polarization, as well as ohmic loss. The electrochemical reaction that occurs within the electrode functional layers has been accounted for in the calculation of the concentration polarization. This is believed to give a more realistic view of the mass transfer that occurs in SOECs with composite electrodes via a simple and straightforward one dimensional model. Experimental work with SOECs also has been done and some results are reported. The simulation results are compared with experimental data and the agreement is satisfactory. The model can be conveniently used for optimization of the SOEC electrodes and operational conditions.展开更多
文摘This paper presents a straightforward model studying the performance of a solid oxide electrolysis cell at less computational effort while is still comprehensive accounting for details of all physics involved. The model is one dimensional and can be used to optimize SOECs that have composite electrodes. It includes an average mass transfer analysis used to simulate concentration polarization, activation polarization, as well as ohmic loss. The electrochemical reaction that occurs within the electrode functional layers has been accounted for in the calculation of the concentration polarization. This is believed to give a more realistic view of the mass transfer that occurs in SOECs with composite electrodes via a simple and straightforward one dimensional model. Experimental work with SOECs also has been done and some results are reported. The simulation results are compared with experimental data and the agreement is satisfactory. The model can be conveniently used for optimization of the SOEC electrodes and operational conditions.