Although gold nanoshells are widely considered as one of the promising photothermal nanomaterials used for biomedicine, the high cost, low yield and poor stability severely limit their potential application in clinica...Although gold nanoshells are widely considered as one of the promising photothermal nanomaterials used for biomedicine, the high cost, low yield and poor stability severely limit their potential application in clinical trials.Herein, robust gold nanoshells on silica nanorattles(GSNs)were easily prepared in a high yield by an improved seedmediated method employing polyvinylpyrrolidone(PVP) as a stabilizing and capping agent. The present method is very simple, effective and reproducible and can well control the growth process of gold nanoshells. The as-prepared GSNs have a narrow size distribution(<10 % in standard deviation). Furthermore, the utilization rate of Au in the solution used for the growth of gold nanoshells increases by 70 %than that in previous method. The resultant GSNs have a good structural stability after placing over 6 months due to the protection of PVP. More importantly, in vivo and in vitro toxic studies indicate that the GSNs have good biocompatibility. We believe that our preparation method will remarkably promote the use of gold nanoshells for biomedicine.展开更多
基金the National Natural Science Foundation of China (31271075, 51572271, 81471784, 31400854 and 31270022)
文摘Although gold nanoshells are widely considered as one of the promising photothermal nanomaterials used for biomedicine, the high cost, low yield and poor stability severely limit their potential application in clinical trials.Herein, robust gold nanoshells on silica nanorattles(GSNs)were easily prepared in a high yield by an improved seedmediated method employing polyvinylpyrrolidone(PVP) as a stabilizing and capping agent. The present method is very simple, effective and reproducible and can well control the growth process of gold nanoshells. The as-prepared GSNs have a narrow size distribution(<10 % in standard deviation). Furthermore, the utilization rate of Au in the solution used for the growth of gold nanoshells increases by 70 %than that in previous method. The resultant GSNs have a good structural stability after placing over 6 months due to the protection of PVP. More importantly, in vivo and in vitro toxic studies indicate that the GSNs have good biocompatibility. We believe that our preparation method will remarkably promote the use of gold nanoshells for biomedicine.