Cistanoside compounds were studied as the scavengers of hydroxyl and superoxide anion free radicals with spin trapping ESR method in vitro. Low-temperature ESR technique, experimental technique of immunotoxicology and...Cistanoside compounds were studied as the scavengers of hydroxyl and superoxide anion free radicals with spin trapping ESR method in vitro. Low-temperature ESR technique, experimental technique of immunotoxicology and biochemical method were used to detect the level of reactive oxygen radicals in kidney tissue of rats and SOD level and GSH-Px activity in rat serum. The results indicated that cistanoside compounds could inhibit reactive oxygen free radicals in vitro and prevent and repair the free radical damages for diabetic nephropathy. The experimental data of 揷arbon-particle detection in mouse serum?showed that cistanoside compounds could improve the phagocytotis index of macrophages (Mj) in mice blood and increase the weights of immune organs of mice.展开更多
Background Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this be...Background Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this beneficial effect is still unclear. Since cardiac mito-chondria have been shown to play a crucial role in fatal cardiac arrhythmias and that oxidative stress is one of the main contributors to arr-hythmia generation, we tested the effects of cilostazol on cardiac mitochondria under severe oxidative stress. Methods Mitochondria were isolated from rat hearts and treated with H2O2 to induce oxidative stress. Cilostazol, at various concentrations, was used to study its protective effects. Pharmacological interventions, including a mitochondrial permeability transition pore (mPTP) blocker, cyclosporine A (CsA), and an inner membrane anion channel (IMAC) blocker, 4'-chlorodiazepam (CDP), were used to investigate the mechanistic role of cilostazol on cardiac mitochondria. Cardiac mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential change and mi-tochondrial swelling were determined as indicators of cardiac mitochondrial function. Results Cilostazol preserved cardiac mitochondrial function when exposed to oxidative stress by preventing mitochondrial depolarization, mitochondrial swelling, and decreasing ROS produc-tion. Conclusions Our findings suggest that cardioprotective effects of cilostazol reported previously could be due to its prevention of car-diac mitochondrial dysfunction caused by severe oxidative stress.展开更多
Objective To investigate the role of oxidative stress, inflammation, hypercoagulability and neuroendocrine activation in the transition of hypertensive heart disease to heart failure with preserved ejection fraction ...Objective To investigate the role of oxidative stress, inflammation, hypercoagulability and neuroendocrine activation in the transition of hypertensive heart disease to heart failure with preserved ejection fraction (HFPEF). Methods We performed echocardiography for 112 patients (≥ 60 years old) with normal EF (18 controls and 94 with hypertension), and determined protein carbonylation (PC), and tetrahydrobiopterin (BH4), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), fibrinogen, plasminogen activator inhibitor type-I (PAI-I), von Willebrand factor, chromogranin A (cGA) and B-type natriuretic peptide (BNP) levels from their blood samples. Results We found that 40% (38/94) of the patients with hypertension (HT) had no diastolic dysfunction (HTDD-), and 60% (56/94) had diastolic dysfunction (HTDD+). Compared to the controls, both patient groups had increased PC and BH4, TNF-α, PAI-I and BNP levels, while the HTDD+ group had elevated cGA and CRP levels. Decreased atrial and longitudinal left ventficular (LV) systolic and diastolic myocardial deformation (strain and strain rate) was demonstrated in both patient groups versus the control. Patients whose LV diastolic function deteriorated during the follow-up had elevated PC and IL-6 level compared to their own baseline values, and to the respective values of patients whose LV diastolic function remained unchanged. Oxidative stress, inflammation, BNP and PAI-I levels inversely correlated with LV systolic, diastolic and atrial function. Conclusions In patients with HT and normal EF, the most common HFPEF precursor condition, oxidative stress and inflammation may be responsible for LV systolic, diastolic and atrial dysfunction, which are important determinants of the transition of liT to HFPEF.展开更多
Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to ...Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of o-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenors may increase the capacity of endogenous antioxidant defences and modulate the cellular redox state. Changes in the cellular redox state may have wide-ranging consequences for cellular growth and differentiation. The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. However, in recent years a possible novel aspect inthe mode of action of these compounds has been suggested; that is, the ultimate stimulation of the heme oxygenase-1 (HO-1) pathway is likely to account for the established and powerful antioxidant/anti-inflammatory properties of these polyphenols. The products of the HO-catalyzed reaction, particularly carbon mon- oxide (CO) and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against various stressors in several pathological conditions.展开更多
Objective:To observe the clinical efficacy of body acupuncture combined with FANG’s scalp acupuncture in treating limb dysfunction in the remission stage of stroke and explore the mechanism.Methods:Sixty patients in ...Objective:To observe the clinical efficacy of body acupuncture combined with FANG’s scalp acupuncture in treating limb dysfunction in the remission stage of stroke and explore the mechanism.Methods:Sixty patients in the remission stage of stroke with limb dysfunction were divided into a control group and a treatment group using the random number table method,with 30 cases in each group.The control group was treated with ordinary acupuncture based on the conventional rehabilitation treatment,and the treatment group was additionally offered FANG’s scalp acupuncture.The interventions were conducted once daily with 10 sessions as 1 course.The Fugl-Meyer assessment(FMA)and Barthel index(BI)scores and serum malondialdehyde(MDA)and superoxide dismutase(SOD)levels were compared after 2 treatment courses,and the clinical efficacy was evaluated.Results:After treatment,the FMA and BI scores increased in both groups(P<0.05)and were higher in the treatment group than in the control group(P<0.05).Both groups showed a decreased MDA level and an increased SOD level after the intervention,all showing statistical significance(P<0.05);there were significant differences between the two groups(P<0.05).Conclusion:Based on the conventional rehabilitation treatment,ordinary acupuncture used alone or in combination with FANG’s scalp acupuncture can lower the oxidative stress level and improve limb function in treating limb dysfunction in the remission stage of stroke;body acupuncture plus FANG’s scalp acupuncture can produce better results.展开更多
文摘Cistanoside compounds were studied as the scavengers of hydroxyl and superoxide anion free radicals with spin trapping ESR method in vitro. Low-temperature ESR technique, experimental technique of immunotoxicology and biochemical method were used to detect the level of reactive oxygen radicals in kidney tissue of rats and SOD level and GSH-Px activity in rat serum. The results indicated that cistanoside compounds could inhibit reactive oxygen free radicals in vitro and prevent and repair the free radical damages for diabetic nephropathy. The experimental data of 揷arbon-particle detection in mouse serum?showed that cistanoside compounds could improve the phagocytotis index of macrophages (Mj) in mice blood and increase the weights of immune organs of mice.
文摘Background Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this beneficial effect is still unclear. Since cardiac mito-chondria have been shown to play a crucial role in fatal cardiac arrhythmias and that oxidative stress is one of the main contributors to arr-hythmia generation, we tested the effects of cilostazol on cardiac mitochondria under severe oxidative stress. Methods Mitochondria were isolated from rat hearts and treated with H2O2 to induce oxidative stress. Cilostazol, at various concentrations, was used to study its protective effects. Pharmacological interventions, including a mitochondrial permeability transition pore (mPTP) blocker, cyclosporine A (CsA), and an inner membrane anion channel (IMAC) blocker, 4'-chlorodiazepam (CDP), were used to investigate the mechanistic role of cilostazol on cardiac mitochondria. Cardiac mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential change and mi-tochondrial swelling were determined as indicators of cardiac mitochondrial function. Results Cilostazol preserved cardiac mitochondrial function when exposed to oxidative stress by preventing mitochondrial depolarization, mitochondrial swelling, and decreasing ROS produc-tion. Conclusions Our findings suggest that cardioprotective effects of cilostazol reported previously could be due to its prevention of car-diac mitochondrial dysfunction caused by severe oxidative stress.
文摘Objective To investigate the role of oxidative stress, inflammation, hypercoagulability and neuroendocrine activation in the transition of hypertensive heart disease to heart failure with preserved ejection fraction (HFPEF). Methods We performed echocardiography for 112 patients (≥ 60 years old) with normal EF (18 controls and 94 with hypertension), and determined protein carbonylation (PC), and tetrahydrobiopterin (BH4), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), fibrinogen, plasminogen activator inhibitor type-I (PAI-I), von Willebrand factor, chromogranin A (cGA) and B-type natriuretic peptide (BNP) levels from their blood samples. Results We found that 40% (38/94) of the patients with hypertension (HT) had no diastolic dysfunction (HTDD-), and 60% (56/94) had diastolic dysfunction (HTDD+). Compared to the controls, both patient groups had increased PC and BH4, TNF-α, PAI-I and BNP levels, while the HTDD+ group had elevated cGA and CRP levels. Decreased atrial and longitudinal left ventficular (LV) systolic and diastolic myocardial deformation (strain and strain rate) was demonstrated in both patient groups versus the control. Patients whose LV diastolic function deteriorated during the follow-up had elevated PC and IL-6 level compared to their own baseline values, and to the respective values of patients whose LV diastolic function remained unchanged. Oxidative stress, inflammation, BNP and PAI-I levels inversely correlated with LV systolic, diastolic and atrial function. Conclusions In patients with HT and normal EF, the most common HFPEF precursor condition, oxidative stress and inflammation may be responsible for LV systolic, diastolic and atrial dysfunction, which are important determinants of the transition of liT to HFPEF.
基金Grants (ex 60%) from MURST (Ministero dell’ Università e della Ricerca Scientifica e Tecnologica),Rome,Italy
文摘Many physiological effects of natural antioxidants, their extracts or their major active components, have been reported in recent decades. Most of these compounds are characterized by a phenolic structure, similar to that of o-tocopherol, and present antioxidant properties that have been demonstrated both in vitro and in vivo. Polyphenors may increase the capacity of endogenous antioxidant defences and modulate the cellular redox state. Changes in the cellular redox state may have wide-ranging consequences for cellular growth and differentiation. The majority of in vitro and in vivo studies conducted so far have attributed the protective effect of bioactive polyphenols to their chemical reactivity toward free radicals and their capacity to prevent the oxidation of important intracellular components. However, in recent years a possible novel aspect inthe mode of action of these compounds has been suggested; that is, the ultimate stimulation of the heme oxygenase-1 (HO-1) pathway is likely to account for the established and powerful antioxidant/anti-inflammatory properties of these polyphenols. The products of the HO-catalyzed reaction, particularly carbon mon- oxide (CO) and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression by means of natural compounds contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against various stressors in several pathological conditions.
文摘Objective:To observe the clinical efficacy of body acupuncture combined with FANG’s scalp acupuncture in treating limb dysfunction in the remission stage of stroke and explore the mechanism.Methods:Sixty patients in the remission stage of stroke with limb dysfunction were divided into a control group and a treatment group using the random number table method,with 30 cases in each group.The control group was treated with ordinary acupuncture based on the conventional rehabilitation treatment,and the treatment group was additionally offered FANG’s scalp acupuncture.The interventions were conducted once daily with 10 sessions as 1 course.The Fugl-Meyer assessment(FMA)and Barthel index(BI)scores and serum malondialdehyde(MDA)and superoxide dismutase(SOD)levels were compared after 2 treatment courses,and the clinical efficacy was evaluated.Results:After treatment,the FMA and BI scores increased in both groups(P<0.05)and were higher in the treatment group than in the control group(P<0.05).Both groups showed a decreased MDA level and an increased SOD level after the intervention,all showing statistical significance(P<0.05);there were significant differences between the two groups(P<0.05).Conclusion:Based on the conventional rehabilitation treatment,ordinary acupuncture used alone or in combination with FANG’s scalp acupuncture can lower the oxidative stress level and improve limb function in treating limb dysfunction in the remission stage of stroke;body acupuncture plus FANG’s scalp acupuncture can produce better results.