A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve...A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature.展开更多
OBJECTIVE To explore the effect of liposomal G3139 and transfected antisense phosphorothioate oligodeoxynucleotides directed against the coding region of the bcl-2 messenger RNA and the translation site on apoptosis i...OBJECTIVE To explore the effect of liposomal G3139 and transfected antisense phosphorothioate oligodeoxynucleotides directed against the coding region of the bcl-2 messenger RNA and the translation site on apoptosis in Raji cells.METHODS Cytotoxic effects were measured by use of the MTT method; The expression levels of Bcl-2 protein were assayed by immunofiuorescence using a fluoresce isothiocyanate label. Apoptosis was determined by morphological observation and flow cytometric analysis.RESULTS The 2 antisense oligonucleotides and G3139 can reduce Bcl-2 protein levels and Raji cell viability (IC50=4.54, 4.72 and 4.26 μmol/L, respectively), and induce apoptosis. A scrambled sequence control oligonucleotide and empty liposomes did not alter cell viability, Bcl-2 protein expression or apoptosis rates. There was no difference in reducing Bcl-2 protein levels and apoptosis rates found among the 3 antisense oligonucleotides.CONCLUSION The 2 antisense oligodeoxynucleotides of bcl-2 messenger RNA can effectively induce apoptosis of Raji cells. The 2 antisense sequences and G3139 have a similarity in their antisense effect.展开更多
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing...DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.展开更多
Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this stud...Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this study, the placents of native Tibetan and the high-altitude Hart (ha-Hart) were collected. After the total RNA extraction, the finally synthesized cDNAs were hybridized to mitochondrial array to find the altered expression genes between them. Then, the cytochrome c oxidase 17 (Coxl7), dynactin 2 (DCTN2, also known as p50), and vascular endothelial growth factor receptor (VEGFR, also known as KDR) were chosen from the altered expression genes to further verify the array results using the SYBR Green real-time PCR. Because the altered expression genes (such as Cybb and Cox 17) in the array results related to the activities of COXI and COXIV, the placental mitochondria activities of COXI and COXIV were measured to find their changes in the hypoxia. Results: By a standard of≥1.5 or ≤0.67, there were 24 different expressed genes between the native Tibetan and the ha-Han placents, including 3 up-regulated genes and 21 down-regulated genes. These genes were related to energy metabolism, signal transduction, cell proliferation, electron transport, cell adhesion, nucleotide-excision repair. The array results of Cox17, DCTN2 and KDR were further verified by the real-time RT-PCR. Through the mitochondria respiration measurements, the activity of COXI in the native Tibetan placents were higher than that of ha-Han, there was no difference in COXIV activity between them. Conclusion: The altered mitochondrial related genes in the native Tibetan placents may have a role in the high altitude adaptation for fetuses through changing the activity of mitochondrial COX.展开更多
Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2cor...Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.展开更多
基金Project(51276074)supported by the National Natural Science Foundation of ChinaProject(2014NY008)supported by Innovation Research Foundation of Huazhong University of Science and Technology,China
文摘A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature.
文摘OBJECTIVE To explore the effect of liposomal G3139 and transfected antisense phosphorothioate oligodeoxynucleotides directed against the coding region of the bcl-2 messenger RNA and the translation site on apoptosis in Raji cells.METHODS Cytotoxic effects were measured by use of the MTT method; The expression levels of Bcl-2 protein were assayed by immunofiuorescence using a fluoresce isothiocyanate label. Apoptosis was determined by morphological observation and flow cytometric analysis.RESULTS The 2 antisense oligonucleotides and G3139 can reduce Bcl-2 protein levels and Raji cell viability (IC50=4.54, 4.72 and 4.26 μmol/L, respectively), and induce apoptosis. A scrambled sequence control oligonucleotide and empty liposomes did not alter cell viability, Bcl-2 protein expression or apoptosis rates. There was no difference in reducing Bcl-2 protein levels and apoptosis rates found among the 3 antisense oligonucleotides.CONCLUSION The 2 antisense oligodeoxynucleotides of bcl-2 messenger RNA can effectively induce apoptosis of Raji cells. The 2 antisense sequences and G3139 have a similarity in their antisense effect.
文摘DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.
基金Supported by the National Basic Research Program of China (973 Program, 2006CB504101)the National Natural Science Foundation of China (30393131)
文摘Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this study, the placents of native Tibetan and the high-altitude Hart (ha-Hart) were collected. After the total RNA extraction, the finally synthesized cDNAs were hybridized to mitochondrial array to find the altered expression genes between them. Then, the cytochrome c oxidase 17 (Coxl7), dynactin 2 (DCTN2, also known as p50), and vascular endothelial growth factor receptor (VEGFR, also known as KDR) were chosen from the altered expression genes to further verify the array results using the SYBR Green real-time PCR. Because the altered expression genes (such as Cybb and Cox 17) in the array results related to the activities of COXI and COXIV, the placental mitochondria activities of COXI and COXIV were measured to find their changes in the hypoxia. Results: By a standard of≥1.5 or ≤0.67, there were 24 different expressed genes between the native Tibetan and the ha-Han placents, including 3 up-regulated genes and 21 down-regulated genes. These genes were related to energy metabolism, signal transduction, cell proliferation, electron transport, cell adhesion, nucleotide-excision repair. The array results of Cox17, DCTN2 and KDR were further verified by the real-time RT-PCR. Through the mitochondria respiration measurements, the activity of COXI in the native Tibetan placents were higher than that of ha-Han, there was no difference in COXIV activity between them. Conclusion: The altered mitochondrial related genes in the native Tibetan placents may have a role in the high altitude adaptation for fetuses through changing the activity of mitochondrial COX.
基金supported by the Australian Research Council(ARC DP150103026)the National Natural Science Foundation of China(51278242)~~
文摘Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.