Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet...Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.展开更多
Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bip...Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bipolar transistor(IGBT) technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.展开更多
The full alumina dissolution process in aluminum electrolysis cells was investigated using an improved computational fluid dynamics(CFD)model based on the previous researches by consideration of agglomerate formation....The full alumina dissolution process in aluminum electrolysis cells was investigated using an improved computational fluid dynamics(CFD)model based on the previous researches by consideration of agglomerate formation.The results show that the total mass of alumina agglomerate and its maximum size are mainly dependent on the feeding amount and increase with increasing it.Higher superheat can effectively inhibit the agglomerate formation and thus promote the full alumina dissolution behavior.The full alumina dissolution process mainly includes a fast stage and a slow stage,with an average dissolution rate of 17.24 kg/min and 1.53 kg/min,respectively.About 50%(mass percentage)of the total alumina particles,almost all of which are the well-dispersed alumina fine grains,dissolve within the fast dissolution stage of about 10 s.The maximum values of the average dissolution rate and final percentage of the cumulative dissolved alumina mass are obtained with a feeding amount of 1.8 kg for a superheat of 12℃.The formation of the alumina agglomerates and slow dissolution characteristics play a dominant role in the full dissolution of alumina particles.展开更多
A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and i...A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and installing, versatility, scalability and adaptability of the design, which are particularly important when they are facade integrated. In order to avoid the above mentioned drawbacks of the liquid thermal collectors, the authors propose to apply to them extruded aluminum alloy made heat pipes of originally designed cross-sectional profile with wide fins and longitudinal grooves. Such solar collectors could be a good solution for building facade and roof integration, because they are assembled of several standard and independent, hermetically sealed and light-weight modules, easy mounted and "dry" connected to the main pipeline. At that, their thermal performances are not worse than of the other known ones made of heavier and more expensive copper with higher thermal conductance, or having entire rigid designs. Some variants of the developed solar collectors shaping of the assembled modules for building facade or roof integration are proposed. Variously colored coatings to the absorbers are developed and made of carbon-siliceous nano-composites by means of sol-gel method. Their optical performances were compared with "anodized black". It is stated that colored coatings have a good prospect in thermal SCs (solar collectors) adaptation to building facades decoration, but the works on study and upgrade of their performances should be continued.展开更多
基金Supported by the Hi-Tech. Research and Development Program of China (863) (2002AA649280, 2002AA304030), National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Postdoctrate Research Foundation of Chin
文摘Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
文摘Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bipolar transistor(IGBT) technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.
基金financial supports from the National Natural Science Foundation of China (No. 51704126)the Natural Science Foundation of Jiangsu Province, China (No. BK20170551)Jiangsu Planned Projects for Postdoctoral Research Funds, China (No. 2019K046)。
文摘The full alumina dissolution process in aluminum electrolysis cells was investigated using an improved computational fluid dynamics(CFD)model based on the previous researches by consideration of agglomerate formation.The results show that the total mass of alumina agglomerate and its maximum size are mainly dependent on the feeding amount and increase with increasing it.Higher superheat can effectively inhibit the agglomerate formation and thus promote the full alumina dissolution behavior.The full alumina dissolution process mainly includes a fast stage and a slow stage,with an average dissolution rate of 17.24 kg/min and 1.53 kg/min,respectively.About 50%(mass percentage)of the total alumina particles,almost all of which are the well-dispersed alumina fine grains,dissolve within the fast dissolution stage of about 10 s.The maximum values of the average dissolution rate and final percentage of the cumulative dissolved alumina mass are obtained with a feeding amount of 1.8 kg for a superheat of 12℃.The formation of the alumina agglomerates and slow dissolution characteristics play a dominant role in the full dissolution of alumina particles.
文摘A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and installing, versatility, scalability and adaptability of the design, which are particularly important when they are facade integrated. In order to avoid the above mentioned drawbacks of the liquid thermal collectors, the authors propose to apply to them extruded aluminum alloy made heat pipes of originally designed cross-sectional profile with wide fins and longitudinal grooves. Such solar collectors could be a good solution for building facade and roof integration, because they are assembled of several standard and independent, hermetically sealed and light-weight modules, easy mounted and "dry" connected to the main pipeline. At that, their thermal performances are not worse than of the other known ones made of heavier and more expensive copper with higher thermal conductance, or having entire rigid designs. Some variants of the developed solar collectors shaping of the assembled modules for building facade or roof integration are proposed. Variously colored coatings to the absorbers are developed and made of carbon-siliceous nano-composites by means of sol-gel method. Their optical performances were compared with "anodized black". It is stated that colored coatings have a good prospect in thermal SCs (solar collectors) adaptation to building facades decoration, but the works on study and upgrade of their performances should be continued.