An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,c...An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.展开更多
Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-...Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-ray diffraction (XRD), Energy Dispersive X-ray (EDX) and transmission electron microscopy (TEM). The analysis showed that MoS2 structure was dependant upon the preparation procedure. The activity of the catalysts was determined by measuring the hydrodeoxygenation (HDO) of phenol, 4-methylphenol and 4-methoxyphenol using a batch autoclave reactor operated at 2.8 MPa of hydrogen and temperatures ranging from 320-370℃. By comparing the conversion, the reactivity order of the catalysts was: AHM〉TDM-D〉MoNaph〉thermal〉MoS2 powder〉 TDM-W. Also, the effect of reaction temperature on the HDO conversion was explained in terms of equilibrium of reversible reaction kinetics. The main products of the HDO for phenolic compounds were identified by gas chromatography/mass spectrometry (GC/MS). The results showed that the product distribution and the HDO selectivity were correlated with the reaction temperature. Two parallel reaction routes, direct hydrogenolysis and combined hydrogenation-hydrogenolysis, were confirmed by the analysis of the product distribution. High temperature favored hydrogenolysis over hydrogenation for HDO of phenol and 4-methoxyphenol, whereas for 4-methylphenol the reverse was true.展开更多
Cerium oxide(ceria) has found a wide variety of applications in catalysis including as a catalyst, a modifier, or a support, largely thanks to its robust redox properties and versatile acid-base function. While it is ...Cerium oxide(ceria) has found a wide variety of applications in catalysis including as a catalyst, a modifier, or a support, largely thanks to its robust redox properties and versatile acid-base function. While it is often utilized for oxidation reactions, ceria has recently attracted intense research interest for its unusual ability to selectively hydrogenate alkynes to alkenes. The intriguing hydrogenation ability of ceria has sparked renewed research efforts to understand how pure ceria works as a hydrogenation catalyst. In this review, recent advances in both experimental and computational studies of ceria are summarized, focusing on the interaction of ceria with H2 and in hydrogenation reactions. Significant insights from various studies including in situ spectroscopy/microscopy and theoretic modeling of ceria in hydrogen-involved reactions are discussed, which shed light on the origin of the hydrogenation ability of ceria and the reaction mechanisms involved in ceria-catalyzed alkyne hydrogenation. Ways to further improve both the mechanistic understanding and catalytic performance of ceria-based materials for hydrogenation reactions are proposed at the end in the summary and outlook section.展开更多
The poor quality of crude oil obviously leads to high sulfur contents of oil products, and the technology for desulfurization of crude oil is urgently needed so that the sulfur contents in petroleum product could be r...The poor quality of crude oil obviously leads to high sulfur contents of oil products, and the technology for desulfurization of crude oil is urgently needed so that the sulfur contents in petroleum product could be reduced from the root. This paper describes the progress in technology for desulfurization of crude oil. The present technologies for desulfurization of crude oil include caustic washing, dry gas desulfurization, hydrodesulfurization (HDS), etc. The new combined technologies for desulfurization of crude oil being studied are: biodesulfurization (BDS), hydrogenationbacterial catalysis, the microwave-catalytic hydrogenation, the BDS-OD-RA desulfurization and oxidative desulfurization in electrostatic fields, and the ultrasonic/microwave-catalytic oxidation applied in our lab, with their development trends being also discussed.展开更多
The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides wi...The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.展开更多
基金supported by the National Natural Science Foundation of China(21473073,21473074)‘‘13th Five-Year’’ Science and Technology Research of the Education Department of Jilin Province(2016403)+1 种基金the Development Project of Science and Technology of Jilin Province(20170101171JC,20180201068SF)the Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(201703)~~
文摘An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface.
文摘Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-ray diffraction (XRD), Energy Dispersive X-ray (EDX) and transmission electron microscopy (TEM). The analysis showed that MoS2 structure was dependant upon the preparation procedure. The activity of the catalysts was determined by measuring the hydrodeoxygenation (HDO) of phenol, 4-methylphenol and 4-methoxyphenol using a batch autoclave reactor operated at 2.8 MPa of hydrogen and temperatures ranging from 320-370℃. By comparing the conversion, the reactivity order of the catalysts was: AHM〉TDM-D〉MoNaph〉thermal〉MoS2 powder〉 TDM-W. Also, the effect of reaction temperature on the HDO conversion was explained in terms of equilibrium of reversible reaction kinetics. The main products of the HDO for phenolic compounds were identified by gas chromatography/mass spectrometry (GC/MS). The results showed that the product distribution and the HDO selectivity were correlated with the reaction temperature. Two parallel reaction routes, direct hydrogenolysis and combined hydrogenation-hydrogenolysis, were confirmed by the analysis of the product distribution. High temperature favored hydrogenolysis over hydrogenation for HDO of phenol and 4-methoxyphenol, whereas for 4-methylphenol the reverse was true.
基金sponsored by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Chemical Science,Geosciences,and Biosciences Division,Catalysis Science program。
文摘Cerium oxide(ceria) has found a wide variety of applications in catalysis including as a catalyst, a modifier, or a support, largely thanks to its robust redox properties and versatile acid-base function. While it is often utilized for oxidation reactions, ceria has recently attracted intense research interest for its unusual ability to selectively hydrogenate alkynes to alkenes. The intriguing hydrogenation ability of ceria has sparked renewed research efforts to understand how pure ceria works as a hydrogenation catalyst. In this review, recent advances in both experimental and computational studies of ceria are summarized, focusing on the interaction of ceria with H2 and in hydrogenation reactions. Significant insights from various studies including in situ spectroscopy/microscopy and theoretic modeling of ceria in hydrogen-involved reactions are discussed, which shed light on the origin of the hydrogenation ability of ceria and the reaction mechanisms involved in ceria-catalyzed alkyne hydrogenation. Ways to further improve both the mechanistic understanding and catalytic performance of ceria-based materials for hydrogenation reactions are proposed at the end in the summary and outlook section.
基金to financial supports from the Science and Technology Office of Liaoning Province(Project Number:2008403001)the Liaoning Provincial Office of Education for Innovation Team(Project Number:2009T002).
文摘The poor quality of crude oil obviously leads to high sulfur contents of oil products, and the technology for desulfurization of crude oil is urgently needed so that the sulfur contents in petroleum product could be reduced from the root. This paper describes the progress in technology for desulfurization of crude oil. The present technologies for desulfurization of crude oil include caustic washing, dry gas desulfurization, hydrodesulfurization (HDS), etc. The new combined technologies for desulfurization of crude oil being studied are: biodesulfurization (BDS), hydrogenationbacterial catalysis, the microwave-catalytic hydrogenation, the BDS-OD-RA desulfurization and oxidative desulfurization in electrostatic fields, and the ultrasonic/microwave-catalytic oxidation applied in our lab, with their development trends being also discussed.
基金Universiti Kebangsaan Malaysia for the financial support
文摘The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.