Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s...Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.展开更多
To improve rate and cycling performance of manganese oxide anode material,a precipitation method was combined with thermal annealing to prepare the Mn O/Mn3O4/Se Ox(x=0,2)hybrid anode by controlling the reaction tempe...To improve rate and cycling performance of manganese oxide anode material,a precipitation method was combined with thermal annealing to prepare the Mn O/Mn3O4/Se Ox(x=0,2)hybrid anode by controlling the reaction temperature of Mn2O3 and Se powders.At 3 A/g,the synthesized Mn O/Mn3O4/Se Ox anode delivers a discharge capacity of 1007 m A·h/g after 560 cycles.A cyclic voltammetry quantitative analysis reveals that 89.5%pseudocapacitive contribution is gained at a scanning rate of 2.0 m V/s,and the test results show that there is a significant synergistic effect between Mn O and Mn3O4 phases.展开更多
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for...Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs.展开更多
The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tunin...The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tuning the morphology and structure and the enhancement of the reactivity of active sites by the incorporation of other components are the two main strategies for the enhancement of their catalytic performance.In this study,by combining these two strategies,a unique three-dimensional nanoporous Fe-Co oxyhydroxide layer coated on the carbon cloth(3D-FeCoOOH/CC)was successfully synthesized by in situ electro-oxidation methods,and directly used as a working electrode.The electrode,3D-FeCoOOH/CC,was obtained by the Fe doping process in(NH4)2Fe(SO4)2,followed by continuous in situ electro-oxidization in alkaline medium of“micro go chess piece”arrays on the carbon cloth(MCPAs/CC).Micro characterizations illustrated that the go pieces of MCPAs/CC were completely converted into a thin conformal coating on the carbon cloth fibers.The electrochemical test results showed that the as-synthesized 3D-FeCoOOH/CC exhibited enhanced activity for OER with a low overpotential of 259 mV,at a current density of 10 mA cm^–2,and a small Tafel slope of 34.9 mV dec^–1,as well as superior stability in 1.0 mol L^–1 KOH solution.The extensive analysis revealed that the improved electrochemical surface area,conductivity,Fe-Co bimetallic composition,and the unique 3D porous structure together contributed to the enhanced OER activity of 3D-FeCoOOH/CC.Furthermore,the synthetic strategy applied in this study could be extended to fabricate a series of Co-based electrode materials with the dopant of other transition elements.展开更多
Titanium suboxide is an excellent electrode material for many oxidization reactions.In this article,the electrodes of pure Ti_4O_7,doped Ti_4O_7and the mixed-crystal of Ti_4O_7and Ti_5O_9were prepared to evaluate thei...Titanium suboxide is an excellent electrode material for many oxidization reactions.In this article,the electrodes of pure Ti_4O_7,doped Ti_4O_7and the mixed-crystal of Ti_4O_7and Ti_5O_9were prepared to evaluate their activities and doping effects in the electro-degradation of phenol.It was revealed by the HPLC analysis results that the degradation intermediates and routes were significantly affected by the doping element.On the pure Ti_4O_7anode,a series of classic intermediates were obtained from benzoquinone and hydroquinone to various carboxylic acids.These intermediates were degraded gradually to the final organic intermediate of oxalate in all experiments.At last,oxalate was oxidized to CO_2and H_2O.Distinctively,the Y-doped Ti_4O_7 anode directly broke phenol toα-ketoglutaric acid without the intermediates of benzoquinone and hydroquinone.The strong oxidization ability of the Y-doped Ti_4O_7 anode might be responsible for the highest COD removal ratio.In contrast,the Ga-doped Ti_4O_7 anode showed the worst degradation activity in this article.Three intermediates of benzoquinone,hydroquinone and maleic acid were found during the degradation.Benefiting from the weak ability,oxalate was efficiently accumulated with a very high yield of 74.6%.The results demonstrated promising applications from electrochemical preparation to wastewater degradation by adjusting the doping reagent of Ti_4O_7 electrodes.展开更多
One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) ...One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material with the formula Ln2MO4, Ln = La, Pr, Nd, Sm; M = Ni, Cu, Fe, Co, Mn, is presented. The composition-dependent TEC, electrical conductivity and oxygen transport property are considered. The Ln2MO4 materials exhibit improved chemical stability and compatibility with most of the traditional electrolytes. The complete fuel cells integrated with Ln2MO4 materials as cathodes show promising results. Furthermore, these materials are considered as cathodes of protonic ceramic fuel cell (PCFC), and/or anodes of high temperature steam electrolysis (HTSE). First results show excellent performances. The versatility of these Ln2MO4 materials is explained on the basis of structural features and the ability to accommodate oxygen non-stoichiometry.展开更多
Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation tempe...Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures.Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below600℃ with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped Ba ZrO_3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600 ℃. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures(above 700 ℃).展开更多
Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigat...Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigated as binder- and conductor-free electrode for supercapacitors. Based on a three- electrode electrochemical characterization technique, the obtained 3DCGNC electrodes demonstrated a high specific capacitance of 1,760 F·g^-1 and a remarkable rate capability whereby more than 62.5% capacitance was retained when the current density was raised from 1 to 100 A·g^-1. More importantly, asymmetric supercapacitors were assembled by using the obtained 3DCGNC as the cathode and Ketjenblack as a conventional activated carbon anode. The fabricated asymmetric supercapacitors exhibited very promising electrochemical performances with an excellent combination of high energy density of 103.0 Wh·kg^-1 at a power density of 3.0 kW·kg^-1, and excellent rate capability-energy densities of about 70.4 and 26.0 Wh·kg^-1 were achieved when the average power densities were increased to 26.2 and 133.4 kW·kg^-1, respectively. Moreover, an extremely stable cycling life with only 2.7% capacitance loss after 20,000 cycles at a current density of 5 A·g^-1 was achieved, which compares very well with the traditional doublelayer supercapacitors.展开更多
Highly efficient, clean, and sustainable electrochemical energy storage technologies have been investigated extensively to counter the shortage of fossil fuels and increasingly prominent environmental problems. Superc...Highly efficient, clean, and sustainable electrochemical energy storage technologies have been investigated extensively to counter the shortage of fossil fuels and increasingly prominent environmental problems. Supercapacitors(SCs) have received wide attention as critical devices for electrochemical energy storage because of their rapid charging-discharging capability and long life cycle. Various transition metal oxides(TMOs), such as MnO_2, NiO, Co_3O_4,and CuO, have been extensively studied as electrode materials for SCs. Compared with carbon and conducting polymers,TMO materials can achieve higher specific capacitance. For further improvement of electrochemical performance, hierarchically nano structured TMO materials have become a hot research area for electrode materials in SCs. The hierarchical nanostructure can not only offer abundant accessible electroactive sites for redox reactions but also shorten the ion diffusion pathway. In this review, we provide an overall summary and evaluation of the recent progress of hierarchically nano structured TMOs for SCs, including synthesis methods, compositions, structures, and electrochemical performances. Both single-phase TMOs and the composites based on TMOs are summarized. Furthermore, we also prospect the developing foreground of this field. In this view, the important directions mainly include: the nanocomposites of TMOs materials with conductive materials; the cobalt-based materials and the nickel-based materials; the improvement of the volume energy density, the asymmetric SCs, and the flexible all-solid-state SCs.展开更多
This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectri...This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectrics,or white light generation.Emphasis is placed on the relationships between the internal structure and defective surfaces of oxide nanoparticles and their synergy in tailoring the materials properties.This review is arranged in a sequence:(1) structural fundamentals of bulk oxides,using TiO2 as a model simple oxide to highlight the importance of polymorphs in tuning the electronic structures;(2) structural features of simple oxide nanoparticles distinct from the bulk,which show that nanoparticles can be considered as a special solid under the compression as originated from the surface defect dipole-dipole interactions;and(3) new functions achieved through extending the defect chemistry concept to the assembled architectures or multi-component oxide nanoparticles,in which defect surfaces enable the localized electrons or intermediate levels to produce giant dielectric performance or tunable light generation.It is concluded that understandings of defect chemistry provide diverse possibilities to manipulate electrons in oxide nanoparticles for functionalities in energy-relevant applications.展开更多
1 Introduction As environmental pollution continues to worsen,governments are increasing their efforts to develop green transport vehicles,such as electric vehicles and hybrid cars.
To power large-scale energy storage systems,sodium-ion batteries(SIBs)must have not only high-energy density but also high performance under a low-temperature(LT)environment.P2-type manganese oxides with high specific...To power large-scale energy storage systems,sodium-ion batteries(SIBs)must have not only high-energy density but also high performance under a low-temperature(LT)environment.P2-type manganese oxides with high specific capacity are promising cathode candidates for SIBs,but their LT applications are limitedly explored.We proposed a P2-type Na_(0.67)Ni_(0.1)Co_(0.1)Mn_(0.8)O_(2) material with outstanding LT performance prepared through reasonable structure modulation.The material offers an excellent Na^(+) diffusion coefficient(approximately 10^(−9)-10^(−7.5) cm^(2) s^(−1))at−20℃,a superior LT discharge capacity of 147.4 mA h g^(−1) in the Na half-cell system,and outstanding LT full cell performance(energy density of 358.3 W h kg^(−1)).Various characterisations and density function theory calculations results show that the solid solution reaction and pseudocapacitive feature promote the diffusion and desolvation of Na+from the bulk electrode to interface,finally achieving superior electrochemical performance at LT.展开更多
Understanding the carbon-tolerant mechanisms from a microscopic view is of special importance to develop proper anodes for solid oxide fuel cells.In this work,we employed density-functional theory calculations to stud...Understanding the carbon-tolerant mechanisms from a microscopic view is of special importance to develop proper anodes for solid oxide fuel cells.In this work,we employed density-functional theory calculations to study the CH4 reaction mechanism over a Ni/TiO2 nanostructure,which experimentally demonstrated good carbon tolerance.Six potential pathways for methane reforming reactions were studied over the Ni/TiO2(110)surface under both dry and wet atmospheres,and the main concerns were focused on the impact of TiO2 and Ni/TiO2 interface on CO/H2 formation.Our calculations suggest that the reaction between carbon and the interfacial lattice oxygen to form CO*is the dominant pathway for CH4 reforming under both dry and wet atmospheres,and intervention of steam directly to oxidize C*with its dissociated OH*group is less favorable in energy than that to wipe off oxygen vacancy to get ready for next C*oxidation.In all investigated paths,desorption of CO*is one of the most difficult steps.Fortunately,CO*desorption can be greatly promoted by the large heat released from the previous CO*formation process under wet atmosphere.H2O adsorption and dissociation over the TiO2 surface are found to be much easier than those over Ni,yttria stabilized zirconia(YSZ)and CeO2,which should be the key reason for the greatly depressed carbon deposition over Ni-TiO2 particles than traditional YSZ-Ni and CeO2-Ni anode.Our study presents the detailed CO*formation mechanism in CH4 reforming process over the Ni/TiO2 surface,which will benefit future research for exploring new carbon-tolerant solid oxide fuel cell anodes.展开更多
Intercalation transition metal oxides (ITMO)have attracted great attention as lithium-ion battery negative electrodes due to high operation safety,high capacity and rapid ion intercalation.However,the intrinsic low el...Intercalation transition metal oxides (ITMO)have attracted great attention as lithium-ion battery negative electrodes due to high operation safety,high capacity and rapid ion intercalation.However,the intrinsic low electron conductivity plagues the lifetime and cell performance of the ITMO negative electrode.Here we design a new carbon-emcoating architecture through single CO_(2)activation treatment as demonstrated by the Nb_(2)O_(5)/C nanohybrid.Triple structure engineering of the carbon-emcoating Nb_(2)O_(5)/C nanohybrid is achieved in terms of porosity,composition,and crystallographic phase.The carbon-embedding Nb_(2)O_(5)/C nanohybrids show superior cycling and rate performance compared with the conventional carbon coating,with reversible capacity of 387 m A h g(-1)at 0.2 C and 92%of capacity retained after 500cycles at 1 C.Differential electrochemical mass spectrometry(DEMS) indicates that the carbon emcoated Nb_(2)O_(5)nanohybrids present less gas evolution than commercial lithium titanate oxide during cycling.The unique carbon-emcoating technique can be universally applied to other ITMO negative electrodes to achieve high electrochemical performance.展开更多
Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. ...Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. However, the commercial utility of metal oxide anodes has been hindered to date by their poor cycling per- formance. Recent study shows that metal oxide/ graphene composites show fascinating cycling per- formance as anode materials for lABs. In this re- view, we summarize the state of research on prepa- ration of metal oxide/graphene composites and their I.i storage performance. The prospects and future challenges of metal oxide/graphene compos- ites anode materials for lABs are also discussed.展开更多
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(07JJ6082)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy in Central South University,China
文摘Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
基金Project(2018JJ2513)supported by the Natural Science Foundation of Hunan Province,ChinaProject(18A378)supported by the Education Bureau Research Foundation of Hunan Province,ChinaProject(2019GK4012)supported by the Emerging Strategic Industrial Science and Technology Project of Hunan Province,China。
文摘To improve rate and cycling performance of manganese oxide anode material,a precipitation method was combined with thermal annealing to prepare the Mn O/Mn3O4/Se Ox(x=0,2)hybrid anode by controlling the reaction temperature of Mn2O3 and Se powders.At 3 A/g,the synthesized Mn O/Mn3O4/Se Ox anode delivers a discharge capacity of 1007 m A·h/g after 560 cycles.A cyclic voltammetry quantitative analysis reveals that 89.5%pseudocapacitive contribution is gained at a scanning rate of 2.0 m V/s,and the test results show that there is a significant synergistic effect between Mn O and Mn3O4 phases.
基金Project(2019YFC1907405)supported by the National Key R&D Program of ChinaProject(GJJ200809)supported by the Education Department Project Fund of Jiangxi Province,ChinaProject(2020BAB214021)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs.
基金supported by the Taishan Scholar Program of Shandong (ts201511027)the Natural Science Foundation of Shandong Province (2018GGX102030)+1 种基金support from the “Hundred Talent Program” of Chinese academy of Sciences (CAS) (RENZI[2015] 70HAO, Y5100619AM),DICP and QIBEBT (UN201804),Dalian National Laboratory For Clean Energy (DNL),CASResearch Innovation Fund (QIBEBT SZ201801)~~
文摘The development of highly efficient and cost-effective electrode materials for catalyzing the oxygen evolution reaction(OER)is crucial for water splitting technology.The increase in the number of active sites by tuning the morphology and structure and the enhancement of the reactivity of active sites by the incorporation of other components are the two main strategies for the enhancement of their catalytic performance.In this study,by combining these two strategies,a unique three-dimensional nanoporous Fe-Co oxyhydroxide layer coated on the carbon cloth(3D-FeCoOOH/CC)was successfully synthesized by in situ electro-oxidation methods,and directly used as a working electrode.The electrode,3D-FeCoOOH/CC,was obtained by the Fe doping process in(NH4)2Fe(SO4)2,followed by continuous in situ electro-oxidization in alkaline medium of“micro go chess piece”arrays on the carbon cloth(MCPAs/CC).Micro characterizations illustrated that the go pieces of MCPAs/CC were completely converted into a thin conformal coating on the carbon cloth fibers.The electrochemical test results showed that the as-synthesized 3D-FeCoOOH/CC exhibited enhanced activity for OER with a low overpotential of 259 mV,at a current density of 10 mA cm^–2,and a small Tafel slope of 34.9 mV dec^–1,as well as superior stability in 1.0 mol L^–1 KOH solution.The extensive analysis revealed that the improved electrochemical surface area,conductivity,Fe-Co bimetallic composition,and the unique 3D porous structure together contributed to the enhanced OER activity of 3D-FeCoOOH/CC.Furthermore,the synthetic strategy applied in this study could be extended to fabricate a series of Co-based electrode materials with the dopant of other transition elements.
基金Supported by the Key Research Program of Frontier Sciences of CAS(No.QYZDJSSW-JSC021)the Science and Technology Cooperation for Yunnan Province and CAS(No.2016IB002)+1 种基金Science and Technology Service Network Initiative of CAS(No.KFJ-SWSTS-148)the National Natural Science Foundation of China(Nos.21506233,51402303,21606241,51374191)
文摘Titanium suboxide is an excellent electrode material for many oxidization reactions.In this article,the electrodes of pure Ti_4O_7,doped Ti_4O_7and the mixed-crystal of Ti_4O_7and Ti_5O_9were prepared to evaluate their activities and doping effects in the electro-degradation of phenol.It was revealed by the HPLC analysis results that the degradation intermediates and routes were significantly affected by the doping element.On the pure Ti_4O_7anode,a series of classic intermediates were obtained from benzoquinone and hydroquinone to various carboxylic acids.These intermediates were degraded gradually to the final organic intermediate of oxalate in all experiments.At last,oxalate was oxidized to CO_2and H_2O.Distinctively,the Y-doped Ti_4O_7 anode directly broke phenol toα-ketoglutaric acid without the intermediates of benzoquinone and hydroquinone.The strong oxidization ability of the Y-doped Ti_4O_7 anode might be responsible for the highest COD removal ratio.In contrast,the Ga-doped Ti_4O_7 anode showed the worst degradation activity in this article.Three intermediates of benzoquinone,hydroquinone and maleic acid were found during the degradation.Benefiting from the weak ability,oxalate was efficiently accumulated with a very high yield of 74.6%.The results demonstrated promising applications from electrochemical preparation to wastewater degradation by adjusting the doping reagent of Ti_4O_7 electrodes.
基金supported by the National Natural Science Foundation of China (51072048)Research Project of New Century Excellent Talents in University (NCET-06-0349)Heilongjiang Educational Department (GZ09A204, 1152G027, 11531274 & 11531285)
文摘One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material with the formula Ln2MO4, Ln = La, Pr, Nd, Sm; M = Ni, Cu, Fe, Co, Mn, is presented. The composition-dependent TEC, electrical conductivity and oxygen transport property are considered. The Ln2MO4 materials exhibit improved chemical stability and compatibility with most of the traditional electrolytes. The complete fuel cells integrated with Ln2MO4 materials as cathodes show promising results. Furthermore, these materials are considered as cathodes of protonic ceramic fuel cell (PCFC), and/or anodes of high temperature steam electrolysis (HTSE). First results show excellent performances. The versatility of these Ln2MO4 materials is explained on the basis of structural features and the ability to accommodate oxygen non-stoichiometry.
基金supported by the National Natural Science Foundation of China (51602238)the Thousand Talents Plan
文摘Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells(SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La_(0.8)Sr_(0.2)MnO_(3-δ)(LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures.Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below600℃ with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped Ba ZrO_3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600 ℃. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures(above 700 ℃).
基金This work was supported by the National Natural Science Foundation of China (No. 21001117), the Shenzhen Peacock Plan (No. KQCX20140522150815065), and the Starting-Up Funds of South University of Science and Technology of China (SUSTC) through the Talent Plan of the Shenzhen Government. H. T. L. acknowledges the support from a Key Project of the Hunan Provincial Science and Technology Plan (No. 2014FJ2007).
文摘Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigated as binder- and conductor-free electrode for supercapacitors. Based on a three- electrode electrochemical characterization technique, the obtained 3DCGNC electrodes demonstrated a high specific capacitance of 1,760 F·g^-1 and a remarkable rate capability whereby more than 62.5% capacitance was retained when the current density was raised from 1 to 100 A·g^-1. More importantly, asymmetric supercapacitors were assembled by using the obtained 3DCGNC as the cathode and Ketjenblack as a conventional activated carbon anode. The fabricated asymmetric supercapacitors exhibited very promising electrochemical performances with an excellent combination of high energy density of 103.0 Wh·kg^-1 at a power density of 3.0 kW·kg^-1, and excellent rate capability-energy densities of about 70.4 and 26.0 Wh·kg^-1 were achieved when the average power densities were increased to 26.2 and 133.4 kW·kg^-1, respectively. Moreover, an extremely stable cycling life with only 2.7% capacitance loss after 20,000 cycles at a current density of 5 A·g^-1 was achieved, which compares very well with the traditional doublelayer supercapacitors.
基金supported by the National Natural Science Foundation of China (51202106,21671170 and 21673203)New Century Excellent Talents of the University in China (NCET-130645)+6 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(164200510018)the Plan for Scientific Innovation Talent of Henan Provincethe Program for Innovative Research Team (in Science and Technology) in the University of Henan Province(14IRTSTHN004 and 16IRTSTHN003)the Science & Technology Foundation of Henan Province (122102210253 and 13A150019)the Science & Technology Foundation of Jiangsu Province (BK20150438)the Six Talent Plan (2015-XCL-030)China Postdoctoral Science Foundation (2012M521115)
文摘Highly efficient, clean, and sustainable electrochemical energy storage technologies have been investigated extensively to counter the shortage of fossil fuels and increasingly prominent environmental problems. Supercapacitors(SCs) have received wide attention as critical devices for electrochemical energy storage because of their rapid charging-discharging capability and long life cycle. Various transition metal oxides(TMOs), such as MnO_2, NiO, Co_3O_4,and CuO, have been extensively studied as electrode materials for SCs. Compared with carbon and conducting polymers,TMO materials can achieve higher specific capacitance. For further improvement of electrochemical performance, hierarchically nano structured TMO materials have become a hot research area for electrode materials in SCs. The hierarchical nanostructure can not only offer abundant accessible electroactive sites for redox reactions but also shorten the ion diffusion pathway. In this review, we provide an overall summary and evaluation of the recent progress of hierarchically nano structured TMOs for SCs, including synthesis methods, compositions, structures, and electrochemical performances. Both single-phase TMOs and the composites based on TMOs are summarized. Furthermore, we also prospect the developing foreground of this field. In this view, the important directions mainly include: the nanocomposites of TMOs materials with conductive materials; the cobalt-based materials and the nickel-based materials; the improvement of the volume energy density, the asymmetric SCs, and the flexible all-solid-state SCs.
基金financially supported by the National Natural Science Foundation of China (21025104, 20831004 & 91022018)National Basic Research Program of China (2011CBA00501 & 2007CB613301)
文摘This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectrics,or white light generation.Emphasis is placed on the relationships between the internal structure and defective surfaces of oxide nanoparticles and their synergy in tailoring the materials properties.This review is arranged in a sequence:(1) structural fundamentals of bulk oxides,using TiO2 as a model simple oxide to highlight the importance of polymorphs in tuning the electronic structures;(2) structural features of simple oxide nanoparticles distinct from the bulk,which show that nanoparticles can be considered as a special solid under the compression as originated from the surface defect dipole-dipole interactions;and(3) new functions achieved through extending the defect chemistry concept to the assembled architectures or multi-component oxide nanoparticles,in which defect surfaces enable the localized electrons or intermediate levels to produce giant dielectric performance or tunable light generation.It is concluded that understandings of defect chemistry provide diverse possibilities to manipulate electrons in oxide nanoparticles for functionalities in energy-relevant applications.
基金supported by the National Science Foundation of China(51502009,51532001,21675109)the National Key Basic Research Program of China(2014CB31802)the Science Foundation of Henan province(162300410209)
文摘1 Introduction As environmental pollution continues to worsen,governments are increasing their efforts to develop green transport vehicles,such as electric vehicles and hybrid cars.
基金the financial support from the National Natural Science Foundation of China(51774251)Shanghai Science and Technology Commission’s"2020 Science and Technology Innovation Action Plan"(20511104003)+2 种基金the Natural Science Foundation of Shanghai(21ZR1424200)Hebei Natural Science Foundation for Distinguished Young Scholars(B2017203313)Talent Engineering Training Funds of Hebei Province(A201802001)。
文摘To power large-scale energy storage systems,sodium-ion batteries(SIBs)must have not only high-energy density but also high performance under a low-temperature(LT)environment.P2-type manganese oxides with high specific capacity are promising cathode candidates for SIBs,but their LT applications are limitedly explored.We proposed a P2-type Na_(0.67)Ni_(0.1)Co_(0.1)Mn_(0.8)O_(2) material with outstanding LT performance prepared through reasonable structure modulation.The material offers an excellent Na^(+) diffusion coefficient(approximately 10^(−9)-10^(−7.5) cm^(2) s^(−1))at−20℃,a superior LT discharge capacity of 147.4 mA h g^(−1) in the Na half-cell system,and outstanding LT full cell performance(energy density of 358.3 W h kg^(−1)).Various characterisations and density function theory calculations results show that the solid solution reaction and pseudocapacitive feature promote the diffusion and desolvation of Na+from the bulk electrode to interface,finally achieving superior electrochemical performance at LT.
基金financially supported by the National Basic Research Program of China (2017YFA0402800 and 2016YFA0200602)the National Natural Science Foundation of China (51472228 and 21573204)+1 种基金the Fundamental Research Funds for the Central Universities (WK3430000004)the One Hundred Person Project of CAS
文摘Understanding the carbon-tolerant mechanisms from a microscopic view is of special importance to develop proper anodes for solid oxide fuel cells.In this work,we employed density-functional theory calculations to study the CH4 reaction mechanism over a Ni/TiO2 nanostructure,which experimentally demonstrated good carbon tolerance.Six potential pathways for methane reforming reactions were studied over the Ni/TiO2(110)surface under both dry and wet atmospheres,and the main concerns were focused on the impact of TiO2 and Ni/TiO2 interface on CO/H2 formation.Our calculations suggest that the reaction between carbon and the interfacial lattice oxygen to form CO*is the dominant pathway for CH4 reforming under both dry and wet atmospheres,and intervention of steam directly to oxidize C*with its dissociated OH*group is less favorable in energy than that to wipe off oxygen vacancy to get ready for next C*oxidation.In all investigated paths,desorption of CO*is one of the most difficult steps.Fortunately,CO*desorption can be greatly promoted by the large heat released from the previous CO*formation process under wet atmosphere.H2O adsorption and dissociation over the TiO2 surface are found to be much easier than those over Ni,yttria stabilized zirconia(YSZ)and CeO2,which should be the key reason for the greatly depressed carbon deposition over Ni-TiO2 particles than traditional YSZ-Ni and CeO2-Ni anode.Our study presents the detailed CO*formation mechanism in CH4 reforming process over the Ni/TiO2 surface,which will benefit future research for exploring new carbon-tolerant solid oxide fuel cell anodes.
基金supported by the National Key R&D Program of China(2016YFB0100100)the National Natural Science Foundation of China(51702335 and 21773279)+8 种基金Zhejiang Non-profit Technology Applied Research Program(LGG19B010001)Ningbo Municipal Natural Science Foundation(2018A610084)the CAS-EU S&T Cooperation Partner Program(174433KYSB20150013)the Key Laboratory of Bio-based Polymeric Materials of Zhejiang Provincethe funding from Marie Sklodowska-Curie Fellowship in EUthe Engineering and Physical Sciences Research Council(EPSRC),including the SUPERGEN Energy Storage Hub(EP/L019469/1)Enabling Next Generation Lithium Batteries(EP/M009521/1)Henry Royce Institute for Advanced Materials(EP/R00661X/1,EP/S019367/1,EP/R010145/1)the Faraday Institution All-Solid-State Batteries with Li and Na Anodes(FIRG007,FIRG008)for financial support。
文摘Intercalation transition metal oxides (ITMO)have attracted great attention as lithium-ion battery negative electrodes due to high operation safety,high capacity and rapid ion intercalation.However,the intrinsic low electron conductivity plagues the lifetime and cell performance of the ITMO negative electrode.Here we design a new carbon-emcoating architecture through single CO_(2)activation treatment as demonstrated by the Nb_(2)O_(5)/C nanohybrid.Triple structure engineering of the carbon-emcoating Nb_(2)O_(5)/C nanohybrid is achieved in terms of porosity,composition,and crystallographic phase.The carbon-embedding Nb_(2)O_(5)/C nanohybrids show superior cycling and rate performance compared with the conventional carbon coating,with reversible capacity of 387 m A h g(-1)at 0.2 C and 92%of capacity retained after 500cycles at 1 C.Differential electrochemical mass spectrometry(DEMS) indicates that the carbon emcoated Nb_(2)O_(5)nanohybrids present less gas evolution than commercial lithium titanate oxide during cycling.The unique carbon-emcoating technique can be universally applied to other ITMO negative electrodes to achieve high electrochemical performance.
基金financially supported by the National Science Foundation for Distinguished Young Scholar(50725208)National Natural Science Foundation of China(11079002&51272012)Specialized Research Fund for the Doctoral Program of Higher Education(20111102130006)
文摘Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. However, the commercial utility of metal oxide anodes has been hindered to date by their poor cycling per- formance. Recent study shows that metal oxide/ graphene composites show fascinating cycling per- formance as anode materials for lABs. In this re- view, we summarize the state of research on prepa- ration of metal oxide/graphene composites and their I.i storage performance. The prospects and future challenges of metal oxide/graphene compos- ites anode materials for lABs are also discussed.